Answer:
Most of free energy available from oxidation of the glucose remains in pyruvate.
Explanation:
The overall reaction of the process glycolysis is:
Glucose + 2 NAD⁺ + 2 ADP + 2 Pi ⇒ 2 Pyruvate + 2 NADH + 2 H⁺ + 2ATP
Glucose is oxidized to give 2 molecules of pyruvate and 2 molecules of NADH and ATP (Energy currency).
<u>Though the free energy of oxidation of glucose is high but only 2 NADH is formed because the most of the free energy that is being released from the oxidation of glucose remains in the pyruvate which is produced in the reaction and thus only 2 molecules are formed.</u>
Answer is: boiling point will be changed by 4°C.
Chemical dissociation of aluminium nitrate in water: Al(NO₃)₃ → Al³⁺(aq) + 3NO⁻(aq).
Change in boiling point: ΔT =i · Kb · b.
Kb - molal boiling point elevation constant of water is 0.512°C/m, this the same for both solution.
b - molality, moles of solute per kilogram of solvent., this is also same for both solution, because ther is same amount of substance.
i - Van't Hoff factor.
Van't Hoff factor for sugar solution is 1, because sugar do not dissociate on ions.
Van't Hoff factor for aluminium nitrate solution is approximately 4, because it dissociates on four ions (one aluminium cation and three nitrate anions). So ΔT is four times bigger.
They are the outer layer of the electron layers.
Answer:
54 g
Explanation:
1 mole of water = H2O
mass of 1 mole of H2O= mass of h2 + mass of o
= 2× mass of h +mass of o
= 2×1+16 =18 g
1 mole of water = 18g
3moles of water = 18×3g= 54g
1,3-pentadiene has two double bonds which are conjugated, which undergo electrophilic addition reaction on reacting with
.
The structure of 1,3-pentadiene is shown in the image.
When strong acid such as
reacts with 1,3-pentadiene, the electrophilic addition reaction can occur either on double bond at 1,2-position or at 3,4-position. The reaction that occurs is shown in the image.