Answer:
1)
(500.mL)(.200M)/.150M = 667 mL
667mL - 500mL = 167mL of water is needed
2)
1.0 L = 1000mL
M1 V1 = M2 V2
(1.6 mol/L) (175 mL) = (x)(1000mL)
x = .28M
Answer:
Copper>Steel>Aluminium
Explanation:
Hello,
Since the heat capacity accounts for the required heat to increase by 1°C, 1 kg of the metal, copper is the one that has the lower heat capacity, it means that it requires the least amount of energy to warm up (increase its temperature), this could be substantiated via the mathematical definition of heat capacity:

Solving for
:

It means that the lower the heat capacity, the higher the final temperature.
Best regards.
Answer:
Solid:- Particles vibrate in a rigid structure and do not move relative to their neighbors.
Liquid:- It takes the shape of its container but keeps a constant volume.
Gas:- Particles move rapidly and independently of each other.
Plasma:- It is the most common state of matter in the universe.
Explanation:
Solids are one of the three states of matter and, unlike liquids or gases, they have a definite shape that is not easy to change. Different solids have particular properties such as stretch, STRENGTH, or hardness that make them useful for different jobs.
A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure
Gas is a state of matter that has no fixed shape and no fixed volume. Gases have lower density than other states of matter, such as solids and liquids. When more gas particles enter a container, there is less space for the particles to spread out, and they become compressed. The particles exert more force on the interior volume of the container.
A plasma is a gas that has been energized to the point that some of the electrons break free from, but travel with, their nucleus.
<u>Answer:</u> The equilibrium concentration of bromine gas is 0.00135 M
<u>Explanation:</u>
We are given:
Initial concentration of chlorine gas = 0.0300 M
Initial concentration of bromine monochlorine = 0.0200 M
For the given chemical equation:

<u>Initial:</u> 0.02 0.03
<u>At eqllm:</u> 0.02-2x x 0.03+x
The expression of
for above equation follows:
![K_c=\frac{[Br_2]\times [Cl_2]}{[BrCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBr_2%5D%5Ctimes%20%5BCl_2%5D%7D%7B%5BBrCl%5D%5E2%7D)
We are given:

Putting values in above equation, we get:

Neglecting the value of x = -0.96 because, concentration cannot be negative
So, equilibrium concentration of bromine gas = x = 0.00135 M
Hence, the equilibrium concentration of bromine gas is 0.00135 M