1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
koban [17]
3 years ago
9

**ASAP PLEASE**

Chemistry
2 answers:
Anna007 [38]3 years ago
8 0

The answer to your question is C.)


larisa [96]3 years ago
5 0

C will be the answer

You might be interested in
When 5ml of HCl was added
777dan777 [17]

Answer:

A. There was still 140 ml of volume available for the reaction

Explanation:

According to Avogadro's law, we have that equal volumes of all gases  contains equal number of molecules

According to the ideal gas law, we have;

The pressure exerted by a gas, P = n·R·T/V

Where;

n = The number of moles

T = The temperature of the gas

R = The universal gas constant

V = The volume of the gas

Therefore, given that the volumes and number of moles of the removed air and added HCl are the same, the pressure and therefore, the volume available for the reaction will remain the same

There will still be the same volume available for the reaction.

5 0
2 years ago
Can we use electrical equipment near water? Explain Why?
tiny-mole [99]

Answer:

You may, but it is too risky.

Even though you are being cautious around using electric equipment around water, you'll never know what can happen. You might accidentally drop that piece of electrical equipment you are using into the water. Water can be splashed around by someone or something without you noticing it and it may affect the object you are using. Sometimes, if water comes in contact with an electrical object, it may cause you electric shocks or the equipment you are using has a chance of exploding and may hurt you. You can guarantee that waterproof electrical equipment is safe to use, but it is better not to risk it too much.

5 0
2 years ago
Aclosed system contains an equimolar mixture of n-pentane and isopentane. Suppose the system is initially all liquid at 120°C an
garri49 [273]

Explanation:

The given data is as follows.

      T = 120^{o}C = (120 + 273.15)K = 393.15 K,  

As it is given that it is an equimolar mixture of n-pentane and isopentane.

So,            x_{1} = 0.5   and   x_{2} = 0.5

According to the Antoine data, vapor pressure of two components at 393.15 K is as follows.

               p^{sat}_{1} (393.15 K) = 9.2 bar

               p^{sat}_{1} (393.15 K) = 10.5 bar

Hence, we will calculate the partial pressure of each component as follows.

                 p_{1} = x_{1} \times p^{sat}_{1}

                            = 0.5 \times 9.2 bar

                             = 4.6 bar

and,           p_{2} = x_{2} \times p^{sat}_{2}

                         = 0.5 \times 10.5 bar

                         = 5.25 bar

Therefore, the bubble pressure will be as follows.

                           P = p_{1} + p_{2}            

                              = 4.6 bar + 5.25 bar

                              = 9.85 bar

Now, we will calculate the vapor composition as follows.

                      y_{1} = \frac{p_{1}}{p}

                                = \frac{4.6}{9.85}

                                = 0.467

and,                y_{2} = \frac{p_{2}}{p}

                                = \frac{5.25}{9.85}

                                = 0.527  

Calculate the dew point as follows.

                     y_{1} = 0.5,      y_{2} = 0.5  

          \frac{1}{P} = \sum \frac{y_{1}}{p^{sat}_{1}}

           \frac{1}{P} = \frac{0.5}{9.2} + \frac{0.5}{10.2}

             \frac{1}{P} = 0.101966 bar^{-1}              

                             P = 9.807

Composition of the liquid phase is x_{i} and its formula is as follows.

                   x_{i} = \frac{y_{i} \times P}{p^{sat}_{1}}

                               = \frac{0.5 \times 9.807}{9.2}

                               = 0.5329

                    x_{z} = \frac{y_{i} \times P}{p^{sat}_{1}}

                               = \frac{0.5 \times 9.807}{10.5}

                               = 0.467

4 0
3 years ago
What is matter?
belka [17]
A Anything that has mass and takes up space
4 0
3 years ago
Read 2 more answers
What volume of 0.307 m naoh must be added to 200.0ml of 0.425m acetic acid (ka = 1.75 x 10-5 ) to produce a buffer of ph = 4.250
Blababa [14]

The buffer solution target has a pH value smaller than that of pKw (i.e., pH < 7.) The solution is therefore acidic. It contains significantly more protons \text{H}^{+} than hydroxide ions \text{OH}^{-}. The equilibrium equation shall thus contain protons rather than a combination of water and hydroxide ions as the reacting species.

Assuming that x \; \text{L} of the 0.307 \text{mol} \cdot \text{dm}^{-3} sodium hydroxide solution was added to the acetic acid. Based on previous reasoning, x is sufficiently small that acetic acid was in excess, and no hydroxide ion has yet been produced in the solution. The solution would thus contain 0.2000 \times 0.425 - 0.307 \; x = 0.085 - 0.307 \; x moles of acetic acid and 0.307 \; x moles of acetate ions.

Let \text{HAc} denotes an acetic acid molecule and \text{Ac}^{-} denotes an acetate ion. The RICE table below resembles the hydrolysis equilibrium going on within the buffer solution.

\begin{array}{lccccc}\text{R} & \text{HAc} & \leftrightharpoons & \text{H}^{+} & + & \text{Ac}^{-}\\\text{I} & 0.085 - 0.307 \; x& & 0 & & 0.307 \; x\\\end{array}

The buffer shall have a pH of 4.250, meaning that it shall have an equilibrium proton concentration of 10^{4.250}\; \text{mol}\cdot \text{dm}^{-3}. There were no proton in the buffer solution before the hydrolysis of acetic acid. Therefore the table shall have an increase of 10^{-4.250}\;\text{mol}\cdot \text{dm}^{-3} in proton concentration in the third row. Atoms conserve. Thus the concentration increase of protons by 10^{-4.250}\;\text{mol}\cdot \text{dm}^{-3} would correspond to a decrease in acetic acid concentration and an increase in acetate ion concentration by the same amount. That is:

\begin{array}{lcccccc}\text{R} & \text{HAc} & \leftrightharpoons & \text{H}^{+} & + & \text{Ac}^{-}\\\text{I} & 0.085 - 0.307 \; x& & 0 & & 0.307 \; x\\\text{C} & - 10^{-4.250} & & +10^{-4.250} & & +10^{-4.250} \\\text{E} & 0.085 - 10^{-4.250} - 0.307 \; x& & 10^{-4.250} & & 10^{-4.250} + 0.307 \; x\end{array}

By definition:

\text{K}_{a} = [\text{H}^{+}] \cdot [\text{Ac}^{-}] / [\text{HAc}]\\\phantom{\text{K}_{a}} = 10^{-4.250} \times (10^{-4.250} + 0.307 \; x) / (0.085 - 10^{-4.250} - 0.307 \; x)

The question states that

\text{K}_{a} = 1.75 \times 10^{-5}

such that

10^{-4.250} \times (10^{-4.250} + 0.307 \; x) / (0.085 - 10^{-4.250} - 0.307 \; x) = 1.75 \times 10^{-5}\\6.16 \times 10^{-5} \; x = 1.48 \times 10^{-6}\\x = 0.0241

Thus it takes 0.0241 \; \text{L} of sodium hydroxide to produce this buffer solution.

6 0
3 years ago
Other questions:
  • Suppose you wanted to monitor a pH change between 5.3 and 6.3. Which indicator would be most appropriate?
    14·2 answers
  • Brainiest if answered in the next 5m
    15·1 answer
  • Two well-known complex ions containing ni are [ni(h2o)6]2+, which is green, and [ni(en)3]2+, which is purple. which one of these
    10·1 answer
  • The atom that contains only one electron in the highest occupied energy sublevel
    8·2 answers
  • What must be balanced in order to have a balanced chemical equation?
    14·1 answer
  • A 25-liter sample of steam at 100°c and 1.0 atm is cooled to 25°c and expanded until the pressure is 19.71 mmhg. if no water con
    10·2 answers
  • An ethylene gas torch requires 300 L of gas at 0.8 atm. What will be the pressure of the gas if ethylene is supplied by a 200.0
    12·1 answer
  • The surface temperature of main-sequence stars increases as
    8·1 answer
  • What happens to the air as it gets farther from the heat source?
    7·1 answer
  • Using the periodic table only, arrange the members of each of the following sets in order of increasing bond strength:
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!