Answer:
The molarity of the solution is 1,03 M.
Explanation:
Molarity is a concentration measure that expresses the moles of solute (in this case HBR) in 1 liter of solution (1000ml). First we calculate the mass of 1 mol of HBr, to calculate the moles that are in 50 g of said compound:
Weight 1 mol HBr= Weight H + Weight Br= 1,01g + 79,90g= 80, 91 g/mol
80,91 g ----1 mol HBr
50,0 g------x= (50,0 g x1 mol HBr)/80,91 g= 0,62 mol HBr
600 ml solution-----0,62 mol HBr
1000ml solution------x= (1000ml solution x 0,62 mol HBr)/600 ml solution
<em>x=1,03 moles HBr ---> The solution is 1,03M</em>
Answer:

Explanation:
Hello!
In this case, since the net ionic equation of a chemical reaction shows up the ionic species that result from the simplification of the spectator ions, which are those at both reactants and products sides, we take into account that aqueous species ionize into ions whereas liquid, solid and gas species remain unionized. In such a way, for the reaction of cesium phosphate and silver nitrate we can write the complete molecular equation:

Whereas the three aqueous salts are ionized in order to write the following complete ionic equation:

In such a way, since the cesium and nitrate ions are the spectator ions because of the aforementioned, the net ionic equation turns out:

Best regards!
C left over heat from the explosion was found
The process that releases energy which causes lightning is known as Glaciation