Answer:
See explanation
Explanation:
Qualitative analysis in chemistry is a method used to determine the ions present in a solution chiefly by means of chemical reactions.
In this case, I suspect the presence of silver ions and/or barium ions. The first step is to add dilute HCl. This will lead to the precipitation of the silver ion as AgCl. If a white precipitate is formed upon addition of HCl then Ag^+ is present in the solution.
Secondly, I add a carbonate such as NH4CO3(aq). This will cause the barium ions to become precipitated as barium carbonate. Hence, the formation of a white precipitate when NH4CO3(aq) is added to the solution indicates the presence of barium ion in the solution.
100 centimeters thick
Starting thickness was 50 cm
1 cm every 50 years= 1x50
1x50=50
Old thickness + New thickness= 50 + 50 = 100 cm
:)
One is a mixture and the other is a compound
We have to first write a balanced equation.
so2 + o2 -> so3
this is not balanced though. we have 3 oxygen on right and 4 on left
2so2 + o2 -> 2so3
now it is same on both sides. we have to figure out which is limiting reagent with the given amounts of reagents. we do this by comparing the ratio between them in terms of moles. we see that so2 has a coefficient of 2 and o2 has none which implies 1 and so3 has 2. this means that for every 2 moles of so2 reacting with 1 mole of o2, we get 2 moles of so3.
lets convert the given values to moles. to do this we know that molecular weight is measured in grams per mole. we are given grams and need to cancel out the grams to get moles. so the molecular weight:
so2 =32.1 + 2 * 16 = 64.1 g/mol
o2 = 2 * 16 = 32 g/mol
so3 = 32.1 + 3 * 16 = 80.1 g/mol
now to convert 90 g of 2so2 under ideal conditions.
90g / 64.1g/mol = 1.404 moles
convert this amount of moles of so2 to moles of o2. we have 2 moles of so2 to 1 of o2
1.404moles so2 / 2 moles so2 * 1 mole o2= 0.702 moles o2
so we see under ideal conditions that 90g of so2 would react with .702g of o2. lets see how many we actually have with 100g of o2
100g / 32g/mol =3.16 mol.
so we have a lot more o2 than needed. we are looking for how much is left in grams. we have to figure out how much was used. to do this convert our ideal moles of o2 into grams.
.702 moles o2 * 32g/mol = 22.5g o2
so what we startrd with (100g) minus what we needed (22.5g) is what we have left
100 - 22.5 = 77.5g o2
Answer:
I think it is the second one
Explanation:
Because what the cold water did to the table salt, is that it separated its molecules dissolving the salt.
even though the rock salt was in hot water it was a bigger particle. But the big difference was only because the water temperature ️.