Answer:
If you multiply two negative integers... the product will be positive
For example: -4 * -5 = 20
We have:
(30x²+23x+16)/(cx+3) - 13/(cx+3) = 6x+1
(30x²+23x+16 - 13)/(cx+3) = 6x+1
(30x²+23x+3)/(cx+3) = 6x+1
30x²+23x+3 = (cx+3)(6x+1)
30x²+23x+3 = 6cx²+cx+18x+3
30x² + 23x + 3 - 6cx² - cx - 18x - 3 = 0
(30 - 6c)x² +(5 - c)x = 0
6(5 - c)x² +(5 - c)x = 0
(5 - c)(6x² +x) = 0, and x∈ R\ {3/c} ⇒ 5 - c = 0 ⇒ c = 5.
Answer:
(7,12),(-12,-7)
Step-by-step explanation:
x^2 + y^2 = 193
x - y = - 5
x = y - 5
(y - 5)^2 + y^2 = 193
y^2 - 10y + 25 + y^2 = 193
2y^2 - 10y + 25 = 193
2y^2 - 10y + 25 - 193 = 0
2y^2 - 10y - 168 = 0
2*(y^2 - 5y - 84) = 0 This factors into
2*( y - 12) (y + 7) = 0
y = 12
in which case x = 12 - 5 = 7
y = - 7
in which case x = -7 - 5 = - 12