1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
asambeis [7]
2 years ago
12

While driving fast around a sharp right turn, you find yourself pressing against the car door. What is happening?

Physics
1 answer:
sergiy2304 [10]2 years ago
3 0

Answer:

option C

Explanation:

The correct answer is option C

When the driver takes the sharp right turn the door will exert rightward pressure on the driver.

When the driver takes the sudden right turn the tendency of the body is to be in the straight line by the vehicle moves in the circular path so, as the vehicle turns it applies a rightward force on you.

The pushing of the door to you because of the centripetal force acting on the car due to sudden sharp turn.

You might be interested in
An explanation for planetary differentiation is_____________.
Luda [366]

Answer:

C. The process through which distinct layers with characteristic chemical and/or physical properties are formed

Explanation:

I know It cause i took that test last year. Just wanna help GL.

5 0
3 years ago
Which four equations can be used to solve for acceleration
emmainna [20.7K]

The four equations for acceleration are obtained from the three equations of motion and from second law of motion.

Explanation:

Acceleration is defined as the rate of change of velocity with respect to time. So the change in velocity with respect to time can be determined using the three equations of motions.

So from the first equation of motion, v = u + at , we can determine the value of acceleration if time taken, final and initial velocity is known. The equation can be re-written as a = \frac{v-u}{t}

Similarly, from the second equation of motion, s = ut + 1/2 at², we can determine the equation for acceleration as a = 2*\frac{s-ut}{t^{2} }

So this is second equation for acceleration.

Then from the third equation of motion, v^{2}- u^{2} = 2* a *s

the acceleration equation is determined as a = \frac{v^{2}-u^{2}  }{2s}

In addition to these three equation, another equation is present to determine the acceleration with respect to force from the Newton's second law of motion. F = Mass × acceleration. From this, acceleration = Force/mass.

So, these are the four equations for acceleration.

8 0
3 years ago
Realiza la siguiente conversión de unidades: 340 N a Kgf
OleMash [197]

Answer:

The answer is 34.67 kilograms force

3 0
2 years ago
A 25 kg child plays on a swing having support ropes that are 2.20 m long. A friend pulls her back until the ropes are 42◦ from t
Semmy [17]

Answer:

A) P.E = 138.44 J

B) The velocity of swing at bottom, v = 3.33 m/s

C) The work done, W = -138.44 J

Explanation:

Given,

The mass of the child, m = 25 Kg

The length of the swing rope, L = 2.2 m

The angle of the swing to the vertical position, ∅ = 42°

A) The potential energy at the initial position ∅ = 42° is given by the relation

                                P.E = mgh joule

Considering h  = 0 for the vertical position

The h at ∅ = 42° is  h = L (1 - cos∅)

                               P.E = mgL (1 - cos∅)

Substituting the given values in the above equation

                               P.E = 25 x 9.8 x 2.2 (1 - cos42°)

                                      = 138.44 J

The potential energy for the child just as she is released, compared to the potential energy at the bottom of the swing is, P.E = 138.44 J

B) The velocity of the swing at the bottom.

At bottom of the swing the P.E is completely transformed into the K.E

                  ∴                 K.E = P.E

                                     1/2 mv² = 138.44

                                     1/2 x 25 x v² 138.44

                                            v² = 11.0752

                                             v = 3.33 m/s

The velocity of the swing at the bottom is, v = 3.33 m/s

C) The work done by the tension in the rope from initial position to the bottom

             Tension on string, T = Force acting on the swing, F

                      W=L\int\limits^0_\phi{F} \, d \phi

                             =L\int\limits^0_\phi{mg.sin \phi} \, d \phi

                            = -Lmg[cos\phi]_{42}^{0}

                            = - 2.2 x 25 x 9.8 [cos0 - cos 42°]

                            = - 138.44 J

The negative sign in the in energy is that the work done is towards the gravitational force of attraction.

The work done by the tension in the ropes as the child swings from the initial position to the bottom of the swing, W = - 138.44 J

3 0
3 years ago
A 4.0-kg object is supported by an aluminum wire of length 2.0 m and diameter 2.0 mm. How much will the wire stretch?
forsale [732]

Answer:

The extension of the wire is 0.362 mm.

Explanation:

Given;

mass of the object, m = 4.0 kg

length of the aluminum wire, L = 2.0 m

diameter of the wire, d = 2.0 mm

radius of the wire, r = d/2 = 1.0 mm = 0.001 m

The area of the wire is given by;

A = πr²

A = π(0.001)² = 3.142 x 10⁻⁶ m²

The downward force of the object on the wire is given by;

F = mg

F = 4 x 9.8 = 39.2 N

The Young's modulus of aluminum is given by;

Y = \frac{stress}{strain}\\\\Y = \frac{F/A}{e/L}\\\\Y = \frac{FL}{Ae} \\\\e = \frac{FL}{AY}

Where;

Young's modulus of elasticity of aluminum = 69 x 10⁹ N/m²

e = \frac{FL}{AY} \\\\e = \frac{(39.2)(2)}{(3.142*10^{-6})(69*10^9)} \\\\e = 0.000362 \ m\\\\e = 0.362 \ mm

Therefore, the extension of the wire is 0.362 mm.

8 0
2 years ago
Other questions:
  • Part a consider another special case in which the inclined plane is vertical (θ=π/2). in this case, for what value of m1 would t
    7·1 answer
  • What is the de broglie wavelength of a 149-g baseball traveling at 95.4 mph? (1 mile = 1.609 km, h = 6.63 × 10–34 j·s)?
    13·1 answer
  • How does an electric field change due to voltage?
    8·1 answer
  • If the frequency of sound wave is doubled, the wavelength:
    8·1 answer
  • A 5.0-kg clay putty ball and a 10.0-kg medicine ball are headed towards each other. Both have the same speed of 20 m/s. If they
    15·1 answer
  • A tetrahedron has an equilateral triangle base with 25.0-cm-long edges and three equilateral triangle sides. The base is paralle
    12·1 answer
  • A mover loads a 100 kg box into the back of a moving truck by
    9·1 answer
  • A projectile is launched with an initial speed of 21.8 m/s at an angle of 35º above the horizontal. Determine the time of flight
    5·1 answer
  • How are solar flares different from solar prominences.
    12·2 answers
  • You can switch the polarity of the bar magnet by clicking on the button with the bar magnet and two semi-circular arrows on the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!