1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
3 years ago
10

Help quick (edge 2021)

Physics
1 answer:
kow [346]3 years ago
8 0

Answer:

a

Explanation:

You might be interested in
A car was moving a 14 m/s. After 30 seconds, it’s speed increased to 20 m/s. What was its acceleration during this time?
Anuta_ua [19.1K]

Answer:

acceleration = 0.2 m/s/s

Explanation:

initial velocity u = 14

final velocity v = 20

time = 30

acceleration = ?

v = u + at

20 = 14 + 30a

30a = 6

a = 0.2 m/s/s

5 0
2 years ago
Read 2 more answers
The scientist to first introduce the concept of inertia was
skelet666 [1.2K]
The first scientist to introduce the concept of inertia was Galileo
4 0
3 years ago
Two transverse waves travel along the same taut string. Wave 1 is described by y1(x, t) = A sin(kx - ωt), while wave 2 is descri
Vadim26 [7]

Answer:

6) Wave 1 travels in the positive x-direction, while wave 2 travels in the negative x-direction.

Explanation:

What matters is the part kx \pm \omega t, the other parts of the equation don't affect time and space variations. We know that when the sign is - the wave propagates to the positive direction while when the sign is + the wave propagates to the negative direction, but <em>here is an explanation</em> of this:

For both cases, + and -, after a certain time \delta t (\delta t >0), the displacement <em>y</em> of the wave will be determined by the kx\pm\omega (t+\delta t) term. For simplicity, if we imagine we are looking at the origin (x=0), this will be simply \pm \omega (t+\delta t).

To know which side, right or left of the origin, would go through the origin after a time \delta t (and thus know the direction of propagation) we have to see how we can achieve that same displacement <em>y</em> not by a time variation but by a space variation \delta x (we would be looking where in space is what we would have in the future in time). The term would be then k(x+\delta x)\pm\omega t, which at the origin is k \delta x \pm \omega t. This would mean that, when the original equation has kx+\omega t, we must have that \delta x>0 for k\delta x+\omega t to be equal to kx+\omega\delta t, and when the original equation has kx-\omega t, we must have that \delta x for k\delta x-\omega t to be equal to kx-\omega \delta t

<em>Note that their values don't matter, although they are a very small variation (we have to be careful since all this is inside a sin function), what matters is if they are positive or negative and as such what is possible or not .</em>

<em />

In conclusion, when kx+\omega t, the part of the wave on the positive side (\delta x>0) is the one that will go through the origin, so the wave is going in the negative direction, and viceversa.

4 0
3 years ago
which of the following cannot be increased by using a machine of some kind? work, force, speed, torque
Lemur [1.5K]

Explanation:

Work cannot be increased by using a machine of some kind.

8 0
2 years ago
If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite d
Yuliya22 [10]

Incomplete question as the mass of baseball is missing.I have assume 0.2kg mass of baseball.So complete question is:

A baseball has mass 0.2 kg.If the velocity of a pitched ball has a magnitude of 44.5 m/sm/s and the batted ball's velocity is 55.5 m/sm/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.

Answer:

ΔP=20 kg.m/s

Explanation:

Given data

Mass m=0.2 kg

Initial speed Vi=-44.5m/s

Final speed Vf=55.5 m/s

Required

Change in momentum ΔP

Solution

First we take the batted balls velocity as the final velocity and its direction is the positive direction and we take the pitched balls velocity as the initial velocity and so its direction will be negative direction.So we have:

v_{i}=-44.5m/s\\v_{f}=55.5m/s

Now we need to find the initial momentum

So

P_{1}=m*v_{i}

Substitute the given values

P_{1}=(0.2kg)(-44.5m/s)\\P_{1}=-8.9kg.m/s

Now for final momentum

P_{2}=mv_{f}\\P_{2}=(0.2kg)(55.5m/s)\\P_{2}=11.1kg.m/s

So the change in momentum is given as:

ΔP=P₂-P₁

=[(11.1kg.m/s)-(-8.9kg.m/s)]\\=20kg.m/s

ΔP=20 kg.m/s

3 0
3 years ago
Other questions:
  • An object is placed 12.5 cm from a lens of focal length 22.0 cm. What is the image distance?
    14·1 answer
  • X-component of length 5 and a y-component of length 4. What is the angle of the vector?
    11·1 answer
  • How long does it usually take a hypothesis to become a theory
    7·2 answers
  • Which colors are contained in white light?
    7·2 answers
  • I will mark brainiest! Please help ASAP
    11·1 answer
  • URGENT FOR FINAL
    5·1 answer
  • A ball is dropped from the top of a building. The gravitational force is 10 N down, and the force of air resistance is 1 N up. W
    14·1 answer
  • What is displacement?
    6·1 answer
  • What is the purpose of delivering medical aid through drones
    10·1 answer
  • A dart is thrown at a target that is supported by a wooden backstop. It strikes the backstop with an initial velocity of 350 m/s
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!