Because you see yourself the opposite way in a mirror. So yes your “seeing” yourself but not how everyone else sees you.
Answer:
Explanation:
Given that,
Mass of the thin hoop
M = 2kg
Radius of the hoop
R = 0.6m
Moment of inertial of a hoop is
I = MR²
I = 2 × 0.6²
I = 0.72 kgm²
Period of a physical pendulum of small amplitude is given by
T = 2π √(I / Mgd)
Where,
T is the period in seconds
I is the moment of inertia in kgm²
I = 0.72 kgm²
M is the mass of the hoop
M = 2kg
g is the acceleration due to gravity
g = 9.8m/s²
d is the distance from rotational axis to center of of gravity
Therefore, d = r = 0.6m
Then, applying the formula
T = 2π √ (I / MgR)
T = 2π √ (0.72 / (2 × 9.8× 0.6)
T = 2π √ ( 0.72 / 11.76)
T = 2π √0.06122
T = 2π × 0.2474
T = 1.5547 seconds
T ≈ 1.55 seconds to 2d•p
Then, the period of oscillation is 1.55seconds
Answer: A:The reproductive system produces hormones.
B:The reproductive system transports reproductive cells.
C:The reproductive system produces reproductive cells.
Explanation:
A:The reproductive system produces hormones. : The reproductive organs ovaries in females and testes in males produces hormones. The ovaries produce estrogen and progesterone and testes produce testosterone.
B:The reproductive system transports reproductive cells. : The ovaries in females transfers an egg into the fallopian tube and testes in males secrete sperms at the time of copulation the fertilization of egg and sperm leads to the development of zygote the precursor of new life.
C:The reproductive system produces reproductive cells.: The ovaries undergo oogenesis and in testes spermatogenesis takes place to develop egg and sperms respectively.
<h2>Answer:</h2>
The diagram is not showing the second law of thermodynamics. It is the demonstration of 1st law of thermodynamics.
<h3>Explanation:</h3>
Second law of thermodynamics describes the entropy of the system increase with time, it does not decrease with time. It is constant for ideal systems.
While in first law of thermodynamics, it is stated that the energy of a system can not be lost but it is transferred from one form to other form.
And in this picture, it is shown that the energy released from heat source to cold sink is used in doing work.
Work and heat are forms of energy.