1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
3 years ago
9

A 45.0 mL sample of 0.020 M acetic acid (HC2H3O2) is titrated with 0.020 M NaOH.? Determine the pH of the solution after adding

35.0 mL of any NaOH. (Ka of acetic acid is 1.8 x 10-5) HC2H3O2 (aq) + NaOH (aq) D NaC2H3O2(aq) + H2O (l) (Hint: Calculate new concentration and ICE table)
Chemistry
1 answer:
White raven [17]3 years ago
4 0

Answer:

Explanation:

CH₃COOH + NaOH = CH₃COONa + H₂O .

.02M

CH₃COOH  = CH₃COO⁻ + H⁺

C                       xC             xC

Ka = xC . xC / C = x² C

1.8 x 10⁻⁵ = x² . .02

x² = 9 x 10⁻⁴

x = 3 x 10⁻²

= .03

concentration of H⁺ = xC = .03 . .02

= 6 x 10⁻⁴ M , volume =  45 x 10⁻³ L

moles of H⁺  = 6 X 10⁻⁴  x 45 x 10⁻³

= 270 x 10⁻⁷ moles

= 2.7 x 10⁻⁵ moles

concentration of NaOH = .0200 M , volume = 35 x 10⁻³ L

moles of Na OH = 2 X 10⁻²  x 35 x 10⁻³

= 70 x 10⁻⁵ moles

=  

NaOH is a strong base so it will dissociate fully .

there will be neutralisation reaction between the two .

Net NaOH remaining = (70 - 2.7 ) x 10⁻⁵ moles

= 67.3 x 10⁻⁵ moles of NaOH

Total volume = 45 + 35 = 80 x 10⁻³

concentration of NaOH after neutralisation.= 67.3  x 10⁻⁵ / 80 x 10⁻³ moles / L

= 8.4125  x 10⁻³ moles / L

OH⁻ = 8.4125  x 10⁻³

H⁺ = 10⁻¹⁴ / 8.4125  x 10⁻³

= 1.1887 x 10⁻¹²

pH = - log (  1.1887 x 10⁻¹² )

= 12 - log 1.1887

= 12 - .075

= 11.925 .

You might be interested in
That's just the tip of the iceberg" is a popular expression you may have heard. It means that what you can see is only a small p
puteri [66]
Answer:

B 1.23 g/cc

Explanation:
For something to float on seawater, the density must be less than 1.03 g/mL. If the object sinks, the density is greater than 1.03 g/mL.

Let’s examine the answer choices. Keep in mind, the ice berg is mostly below the water level.

A. 0.88 g/cc
This is less than 1.03 g/cc, which would result in floating.

B. 1.23 g/cc
This is the best answer choice. The iceberg is mostly beneath the water, but some of it is exposed. The density is greater than 1.03 g/mL, but not so much greater that it would immediately sink.

C. 0.23 g/cc
This is less than 1.03 g/cc, which would produce floating.

D. 4.14 g/cc
This is much greater than 1.03 g/cc and the result would be sinking.
5 0
3 years ago
Mercury has an atomic number of 80 and a mass number of 200.
denis23 [38]
C. The mass number is the amount of Protons and electrons there are combined, so 200 - 80 is 120.
8 0
3 years ago
Read 2 more answers
A mixture of helium and methane gases, at a total pressure of 821 mm Hg, contains 0.723 grams of helium and 3.43 grams of methan
Nookie1986 [14]

<u>Answer:</u>

<u>For 1:</u> The partial pressure of helium is 376 mmHg and that of methane gas is 445 mmHg

<u>For 2:</u> The mole fraction of nitrogen gas is 0.392 and that of carbon dioxide gas is 0.608

<u>Explanation:</u>

<u>For 1:</u>

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}     .....(1)

  • <u>For helium:</u>

Given mass of helium = 0.723 g

Molar mass of helium = 4 g/mol

Putting values in equation 1, we get:

\text{Moles of helium}=\frac{0.723g}{4g/mol}=0.181mol

  • <u>For methane gas:</u>

Given mass of methane gas = 3.43 g

Molar mass of methane gas = 16 g/mol

Putting values in equation 1, we get:

\text{Moles of methane gas}=\frac{3.43g}{16g/mol}=0.214mol

To calculate the mole fraction , we use the equation:

\chi_A=\frac{n_A}{n_A+n_B}     .......(2)

To calculate the partial pressure of gas, we use the equation given by Raoult's law, which is:

p_{A}=p_T\times \chi_{A}       ......(3)

  • <u>For Helium gas:</u>

We are given:

n_{He}=0.181mol\\n_{CH_4}=0.214mol

Putting values in equation 2, we get:

\chi_{He}=\frac{0.181}{0.181+0.214}=0.458

Calculating the partial pressure by using equation 3, we get:

p_T=821mmHg\\\\\chi_{He}=0.458

Putting values in equation 3, we get:

p_{He}=0.458\times 821mmHg=376mmHg

  • <u>For Methane gas:</u>

We are given:

n_{He}=0.181mol\\n_{CH_4}=0.214mol

Putting values in equation 2, we get:

\chi_{CH_4}=\frac{0.214}{0.181+0.214}=0.542

Calculating the partial pressure by using equation 3, we get:

p_T=821mmHg\\\\\chi_{CH_4}=0.542

Putting values in equation 3, we get:

p_{CH_4}=0.542\times 821mmHg=445mmHg

Hence, the partial pressure of helium is 376 mmHg and that of methane gas is 445 mmHg

  • <u>For 2:</u>

We are given:

Partial pressure of nitrogen gas = 363 mmHg

Partial pressure of carbon dioxide gas = 564 mmHg

Total pressure = (363 + 564) mmHg = 927 mmHg

Calculating the mole fraction of the gases by using equation 3:

<u>For nitrogen gas:</u>

363=\chi_{N_2}\times 927\\\\\chi_{N_2}=\frac{363}{927}=0.392

<u>For carbon dioxide gas:</u>

564=\chi_{CO_2}\times 927\\\\\chi_{CO_2}=\frac{564}{927}=0.608

Hence, the mole fraction of nitrogen gas is 0.392 and that of carbon dioxide gas is 0.608

6 0
3 years ago
How many cubic inches are there in 3.25 yd3?
valina [46]
151632 cubic inches
8 0
3 years ago
Read 2 more answers
Which forces are intramolecular and which intermolecular?
sergiy2304 [10]

There must be an intramolecular force. The oxygen atoms are produced as a result of the breakdown of oxygen molecules. Intramolecular force is necessary to stop the oxygen (O2) in the air from changing into the O atom.

Which force causes attraction between O2 molecules?

The result is the London dispersion force, a fleeting attractive attraction, which is created when the electrons in two neighboring atoms occupy positions that temporarily cause the atoms to form dipoles. This interaction is commonly described by the phrase "induced dipole-induced dipole attraction".

What is the difference between intramolecular forces and intermolecular forces which type is stronger?

In general, intramolecular forces are greater than intermolecular forces. Ion-dipole interaction exerts the strongest intermolecular force, followed by hydrogen bonds, dipole-dipole interaction, and London dispersion. Examples. Hydrogen bonding forces, London dispersion forces, and dipole-dipole forces are the three different kinds of intermolecular interactions. The three different kinds of intramolecular forces are metal bonds, ionic bonds, and covalent bonds.

Learn more about intramolecular forces: brainly.com/question/28170469

#SPJ4

7 0
2 years ago
Other questions:
  • Anyone know what the answer is??
    7·1 answer
  • Balance the chemical reaction equation
    10·1 answer
  • In a diagnostic test for leukemia, a person receives 4.1 mL of a solution containing selenium-75. If the activity of the seleniu
    11·2 answers
  • How many moles of argon are equal to 3.01×1023 atoms
    10·1 answer
  • A synthesis reaction takes place when carbon monoxide (CO) and hydrogen gas (H2) react to form methanol (CH3OH). How many grams
    7·1 answer
  • Jules Verne wrote the book Twenty Thousand Leagues Under the Sea. If one league - 5.556 km and one furlong - 660.0 feet, how man
    9·1 answer
  • When calcium chloride is dissolved in water, to which end of the adjacent water molecules will a calcium ion be attracted? the o
    15·1 answer
  • 3. 78 mL of 2.5 M phosphoric acid is neutralized with 500 mL of potassium hydroxide. What is the
    6·1 answer
  • Warm air and water both tend to rise while cooler air and water sink. When different parts of the oceans are heated unevenly, th
    13·1 answer
  • What volume is occupied by 0.104 mol of helium gas at a pressure of 0.91 atm and a temperature of 314 K ?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!