Total of 127.013 C of charge is passed
Given
weight of Ag solution before current has passed = 1.7854 g
weight of Ag solution after current has passed = 1.8016 g
Molecular mass of Ag = 107.86 g
Faraday's Constant = 96485
First of all we have to apply Faraday's First Law of Electrolysis i.e
m = ZQ
where
Z is propotionality constant (g/C)
Q is charge (C)
Hence,
Z = Atomic mass of substance/ Faraday's Constant
= 
= 0.0011178 g/C
Now ,
change in mass before and after the passing of current (Δm)
Δm = 1.8016g-1.7854g
= 0.0162g
Now amount of coulombs passed = 
amount of coulombs passed = 127.03524 C
Thus from the above conclusion we can say that amount of coulombs have passed is 127.03524 C
Learn more about Electrolysis here: brainly.com/question/16929894
#SPJ4
Answer:
H₂(g) +I₂(g) ⟶ 2HI(g)
Explanation:
Kc =Kₚ when the number of moles of gaseous products equals the number of moles of gaseous reactants.
The HI reaction has two moles of gas on each side of the reaction arrow.
K = (Products)ⁿ/(Reactants)ⁿ = (Products/Reactants)ⁿ
Thus, if n is the same for products and reactants, you will get the same number whether you use concentrations or pressures, and Kc = Kₚ
image created by sending electromagnetic radiation through body parts, solid parts appear white
<span>
</span>
Answer:
Mass = 9.58 g
Explanation:
Given data:
Mass of Fe₂O₃ formed = ?
Mass of Fe = 6.7 g
Solution:
Chemical equation:
4Fe + 3O₂ → 2Fe₂O₃
Number of moles of Fe:
Number of moles = mass/molar mass
Number of moles = 6.7 g/ 55.8 g/mol
Number of moles = 0.12 mol
now we will compare the moles of Fe and Fe₂O₃.
Fe : Fe₂O₃
4 : 2
0.12 : 2/4×0.12 = 0.06 mol
Mass of Fe₂O₃:
Mass = number of moles × molar mass
Mass = 0.06 mol × 159.69 g/mol
Mass = 9.58 g
The kinetic theory states that potential energy in a gas is low but has high potential energy and they move around fast, Say in a solid it has more potential energy but less kinetic.