Answer:
9.80 g
Explanation:
The molecular mass of the atoms mentioned in the question is as follows -
S = 32 g / mol
F = 19 g / mol
The molecular mass of the compound , SF₆ = 32 + ( 6 * 19 ) = 146 g / mol
The mass of 6 F = 6 * 19 = 114 g /mol .
The percentage of F in the compound =
mass of 6 F / total mass of the compound * 100
Hence ,
The percentage of F in the compound = 114 g /mol / 146 g / mol * 100
78.08 %
Hence , from the question ,
In 12.56 g of the compound ,
The grams of F = 0.7808 * 12.56 = 9.80 g
(A)Nuclear change..............
Answer: Option (C) is the correct answer.
Explanation:
In a substance, the total energy of its molecular motion is known as heat. Whereas when we measure the average energy of molecular motion of a substance then it is known as temperature.
So, any increase or decrease in temperature will lead to change in heat of a substance.
When one mole of a substance is burned then the amount of energy released in the form of heat is known as heat of combustion.
Relation between heat and temperature is as follows.
q = 
Thus, we can conclude that to measure the enthalpy of combustion it cannot be measured, only calculated using the equation; q =
.
This process is called aerobic respiration.
Answer:
Approximately 1.9 kilograms of this rock.
Explanation:
Relative atomic mass data from a modern periodic table:
To answer this question, start by finding the mass of Pb in each kilogram of this rock.
89% of the rock is
. There will be 890 grams of
in one kilogram of this rock.
Formula mass of
:
.
How many moles of
formula units in that 890 grams of
?
.
There's one mole of
in each mole of
. There are thus
of
in one kilogram of this rock.
What will be the mass of that
of
?
.
In other words, the
in 1 kilogram of this rock contains
of lead
.
How many kilograms of the rock will contain enough
to provide 1.5 kilogram of
?
.