Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>
Answer:
Take a look at the attachment below
Explanation:
Take a look at the periodic table. As you can see, Rubidium is the closest element to Cesium, and happens to have the closest boiling point to Cesium, with only a difference of about 30 degrees.
Respectively, you would think that fluorine should have the least similarity to Cesium with respect to it's boiling point, considering it is the farthest away from the element out of the 4 given. This is not an actual rule, there are no fixed trends of boiling points in the periodic table, there are some but overall the trends vary. However in this case fluorine does have the least similarity to Cesium with respect to it's boiling point, a difference of about 1,546.6 degrees.
<em>Hope that helps!</em>
Answer:
4.) 9, 1, and 4 5.) 4, 1, and 4
Explanation:
I am not quite sure about this because I cannot remember if the coefficient (the number before the elements) is applied to every element in the compound. If it is then your number of atoms are as follows: CORRECTION: you do not have to apply the coefficient to every element only the one that is after it. So when you back and fix the error your number of atoms will be as follows:
number 4
H: 9
P: 1
O: 4
number 5:
H: 4
S: 1
O: 4
you can calculate the number of atoms present in this compound by multiplying the coefficient and the subscripts of each atom.
hope this helped you :)
I’m pretty the answer would be continental slope. :)
I really hope this helps.