The Rutherford–Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1). In this model it is an essential feature that the photon energy (or frequency) of the electromagnetic radiation emitted (shown) when an electron jumps from one orbital to another, be proportional to the mathematical square of atomic charge (Z2). Experimental measurement by Henry Moseley of this radiation for many elements (from Z = 13 to 92) showed the results as predicted by Bohr. Both the concept of atomic number and the Bohr model were thereby given scientific credence. The atomic number is the number of _z_ an atom.
The bond dipole moment<span> uses the idea of </span>electric dipole moment<span> to measure the </span>polarity<span> of a chemical bond within a </span>molecule<span>. It occurs whenever there is a separation of positive and negative charges. In the diagram above, option B exhibited a bond dipole moment. I hope this helps.</span>
Answer: the molecular formula is C10H20O
Explanation:Please see attachment for explanation
Yes, the atomic radius increases as you move down a group of elements.
this is true
going down leads to valence electrons that are further away from nucleus -> less electrostatic attraction -> less pull towards nuc. -> greater radius/volume taken
<span>NO2 weighs 46.005 grams per mol. There are 6.02x10^23 molecules in a mol. In the given sample of 189.5 grams, there are 4.12 mols. This means that there are 2.48x10^24 molecules of NO2 in the given sample.</span>