2,8,3 because Aluminium has the Atomic Number 13
<span>The student should
follow following steps to make 1 L of </span>2.0 M CaCl₂.<span>
<span>
1. First he should
calculate the number of moles of 2.0 M CaCl</span></span>₂ in 1 L solution.<span>
</span>Molarity of the solution = 2.0 M<span>
Volume of solution which should be prepared = 1 L
Molarity =
number of moles / volume of the solution
Hence, number of moles in 1 L = 2 mol
2. Find
out the mass of dry CaCl</span>₂ in 2 moles.<span>
moles =
mass / molar mass
Moles of CaCl₂ =
2 mol</span><span>
Molar mass of CaCl₂ = </span><span>110.98 g/mol
Hence, mass of CaCl</span>₂ = 2 mol x <span>110.98 g/mol
= 221.96
g
3. Weigh the mass
accurately
4. Then take a cleaned and dry1 L volumetric flask and place a funnel top of it. Then carefully add the salt into the volumetric flask and
finally wash the funnel and watch glass
with de-ionized water. That water also should be added into the volumetric
flask.
5. Then add some
de-ionized water into
the volumetric flask and swirl well until all salt are
dissolved.
<span>6. Then top up to
mark of the volumetric flask carefully.
</span></span>
7. As the final step prepared solution should be labelled.
Answer:
Molecular solid
Explanation:
A molecular solid has a low melting point, they are soft and do not conduct electricity.
We have been told in the question that the solid does not really dissolve in water and it's solution does not improve the electrical conductivity of water. Hence, it must be a molecular solid.
Answer:
%
Explanation:
The ethanol combustion reaction is:
→
If we had the amount (x moles) of ethanol, we would calculate the oxygen moles required:

Dividing the previous equation by x:

We would need 3.30 oxygen moles per ethanol mole.
Then we apply the composition relation between O2 and N2 in the feed air:

Then calculate the oxygen moles number leaving the reactor, considering that 0.85 ethanol moles react and the stoichiometry of the reaction:

Calculate the number of moles of CO2 and water considering the same:


The total number of moles at the reactor output would be:

So, the oxygen mole fraction would be:
%