Answer:
Explanation:
1. We can find the temperature of each star using the Wien's Law. This law is given by:
(1)
So, the temperature of the first and the second star will be:


Now the relation between the absolute luminosity and apparent brightness is given:
(2)
Where:
- L is the absolute luminosity
- l is the apparent brightness
- r is the distance from us in light years
Now, we know that two stars have the same apparent brightness, in other words l₁ = l₂
If we use the equation (2) we have:

So the relative distance between both stars will be:
(3)
The Boltzmann Law says,
(4)
- σ is the Boltzmann constant
- A is the area
- T is the temperature
- L is the absolute luminosity
Let's put (4) in (3) for each star.

As we know both stars have the same size we can canceled out the areas.


I hope it helps!
Answer:
Option (D)
Explanation:
The chemical formula for normal water is H2O and the chemical formula for heavy water is D2O.
Where D is deuterium which is the isotope of hydrogen.
There are three isotopes of hydrogen.
1H1 it is called protium.
1H2 it is called deuterium.
1H3 it is called tritium.
Answer:
A. Density is proportional to mass and inversely proportional to volume
Explanation:
Density can be defined as the property that matter has, whether solids, liquids or gases, to be compressed in a given space.
The expression that relates the density with the another values is given by,

Where,
(It is directly proportional to the mass of the object)
(It is inversely proportional to the volumen of the object)
<em>Therefore density is directly proportional to the mass and inversely proportional to the volumen.</em>
Answer: It encourages scientists to give convincing evidence for the results
Answer: two electrons
Explanation: The first principal energy level contains only an s sublevel; therefore, it can hold a maximum of two electrons. Each principal energy level above the first contains one s orbital and three p orbitals. A set of three p orbitals, called the p sublevel, can hold a maximum of six electrons.