Answer:
(A) V = 9.89m/s
(B) U = -2.50m/s
(C) ΔK.E = –377047J
(D) ΔK.E = –257750J
Explanation:
The full solution can be found in the attachment below. The east has been chosen as the direction for positivity.
This problem involves the principle of momentum conservation. This principle states that the total momentum before collision is equal to the total momentum after collision. This problem is an inelastic kind of collision for which the momentum is conserved but the kinetic energy is not. The kinetic energy after collision is always lesser than that before collision. The balance is converted into heat by friction, and also sound energy.
See attachment below for full solution.
Answer:
-5 V
Explanation:
The charged particle (which is positively charged) moves from point A to B, and its kinetic energy increases: it means that the particle is following the direction of the field, so its potential energy is decreasing (because it's been converted into potential energy), therefore it is moving from a point at higher potential (A) to a point at lower potential (B). This means that the value
vb−va
is negative.
We can calculate the potential difference between the two points by using the law of conservation of energy:

where:
is the change in kinetic energy of the particle
is the charge of the particle
is the potential difference
Re-arranging the equation, we can find the value of the potential difference:

Answer:
Such limitations are given below.
Explanation:
- Each pn junction provides limited measurements of maximum forwarding current, highest possible inversion voltage as well as the maximum output level.
- If controlled within certain adsorption conditions, the pn junction could very well offer satisfying performance.
- In connector operation, the maximum inversion voltage seems to be of significant importance.
Answer: V = 15 m/s
Explanation:
As stationary speed gun emits a microwave beam at 2.10*10^10Hz. It reflects off a car and returns 1030 Hz higher. The observed frequency the car will be experiencing will be addition of the two frequency. That is,
F = 2.1 × 10^10 + 1030 = 2.100000103×10^10Hz
Using doppler effect formula
F = C/ ( C - V) × f
Where
F = observed frequency
f = source frequency
C = speed of light = 3×10^8
V = speed of the car
Substitute all the parameters into the formula
2.100000103×10^10 = 3×10^8/(3×10^8 -V) × 2.1×10^10
2.100000103×10^10/2.1×10^10 = 3×108/(3×10^8 - V)
1.000000049 = 3×10^8/(3×10^8 - V)
Cross multiply
300000014.7 - 1.000000049V = 3×10^8
Collect the like terms
1.000000049V = 14.71429
Make V the subject of formula
V = 14.71429/1.000000049
V = 14.7 m/s
The speed of the car is 15 m/s approximately.