So mathematical harmonics are based around a divergent set of fractions. Sigma(1/n)
with the 1st harmonic being... well 1, or 1 full wavelength.The second harmonic is exactly 1/2 the wavelength of the 1st with the third being 1/3 the wavelength. As Wavelengths go down, frequencies go up in a perfect ratio.
Second Harmonic has double the Frequency of the 1st or base note. Third Harmonic is triple and so on.
So the Harmonic set of 375 is.
1. 375
2. 375×2=750
3. 375×3= 1125
.
.
.
etc (: I hope this helps.
The choices are:
a. Normal Force
b. Gravity Force
c. Applied Force
d. Friction Force
e. Tension Force
f. Air Resistance Force
Answer:
The answer is letter e, Tension Force.
Explanation:
Force refers to the "push" and "pull" of an object, provided that the object has mass. This results to acceleration or a change in velocity. There are many types of forces such as <em>Normal Force, Gravity Force, Applied Force, Friction Force, Tension Force and Air Resistance Force.</em>
The situation above is an example of a "tension force." This is considered the force that is being applied to an object by strings or ropes. This is a type force that allows the body to be pulled and not pushed, since ropes are not capable of it. In the situation above, the tension force of the rope is acting on the bag and this allows the bag to be pulled.
Thus, this explains the answer.
Answer:
F = 4.47 10⁻⁶ N
Explanation:
The expression they give for the strength of the tide is
F = 2 G m M a / r³
Where G has a value of 6.67 10⁻¹¹ N m² / kg² and M which is the mass of the Earth is worth 5.98 10²⁴ kg
They ask us to perform the calculation
F = 2 6.67 10⁻¹¹ 135 5.98 10²⁴ 13 / (6.79 10⁶)³
F = 4.47 10⁻⁶ N
This force is directed in the single line at the astronaut's mass centers and the space station
-- reduce the length of a wire to 1/2 . . . cut the resistance in half
-- reduce the diameter to 1/4 . . . reduce the cross-section area by (1/4²) . . . increase the resistance by 16x .
-- R2 = (R1) · (1/2) · (16) = 8 · R1
<em>-- R2 / R1 = 8</em>