Answer:
1331.84 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement = 490 km
a = Acceleration
g = Acceleration due to gravity = 1.81 m/s² = a
From equation of linear motion

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km
Answer:
Acceleration is 7.990487515m/s²
Initial velocity is 0m.s
Explanation:
s=ut+(1/2)at²
210=0(7.25)+(1/2)a(7.25²)
210=26.28125a
∴a=7.990487515m/s²
'Vi' or 'u' is the inital speed. Since it starts from rest, this equals 0.
Answer:
The total energy stays the same but is converted from being stored as gravitational potential energy into kinetic energy of the car as it moves.
Explanation:
the law of conservation of energy states that the total energy of an isolated system remains constant, and since it is gaining speed that energy will be kinetic
Hey! If this is on big ideas get a app called “Slader” It has answers to all math problems just like up the book you use > save it > type in the section you are doing > and look for the problems you are doing.
Answer:
Force = -1161.6 Newton
Explanation:
Given the following data;
Initial velocity, u = 44m/s
Distance ,s = 12.5cm to m = 12.5/100 = 0.125m
Mass = 0.15kg
To find the acceleration;
We would use the third equation of motion;
V ² = U² + 2as
0² = 44² + 2*a*0.125
0 = 1936 + 0.25a
0.25a = -1936
a = -1936/0.25
Acceleration, a = -7744m/s2
Force = mass * acceleration
Substituting into the equation, we have;
Force = 0.15 * (-7744)
Force = -1161.6 Newton
The value of its force is negative because the glove decreases the velocity of the ball.