Answer:

Explanation:
Hello,
In this case, by knowing the given reference reactions, one could rearrange them as follows:


Subsequently, to obtain the main reaction, we add the aforementioned reference rearranged reactions as shown below (just as reference):

Consequently, the equilibrium constant is computed as:
![Kp=\frac{[N_2][O_2]}{[NO]^2} * \frac{[NO_2]^2}{[N_2][O_2]^2} =Kp_2*Kp_3=4.35x10^{18}*7.056x10^{-13}=3.07x10^6](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5BN_2%5D%5BO_2%5D%7D%7B%5BNO%5D%5E2%7D%20%2A%20%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2%5D%5BO_2%5D%5E2%7D%20%3DKp_2%2AKp_3%3D4.35x10%5E%7B18%7D%2A7.056x10%5E%7B-13%7D%3D3.07x10%5E6)
Best regards.
Answer: 0.151
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.
The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
Given:
Putting in the values we get:
Thus the rate of appearance of
is 0.151
Alleles are inside a gene and genes are made up by alleles. Also, a gene is DNA, so the allele is like piece of DNA inside a gene<span>.
Hope this helps:)
</span>
Crystals of hydrated magnesium sulfate used as a purgative or for other medicinal use
It on googIe
Hope that helps