Answer:
It shuttles electrons between the cytochrome complex and photosystem I.
Explanation:
Answer:
b. The final state of the substance is a gas.
d. The sample is initially a liquid. One or more phase changes will occur.
Explanation:
Methane has the following properties:
- Normal melting point: 90.7 K
- Normal boiling point: 111.65 K
*"Normal" refers to normal pressure (1 atm).
According to this, we can affirm:
- Below 90.7 K, methane is solid.
- Between 90.7 K and 111.65 K, methane is liquid.
- Above 111.65 K, methane is gas.
<em>A sample of methane at a pressure of 1.00 atm and a temperature of 93.1 K is heated at constant pressure to a temperature of 158 K. Which of the following are true? Choose all that apply.</em>
<em>a. The liquid initially present will solidify.</em> FALSE. The liquid will vaporize.
<em>b. The final state of the substance is a gas.</em> TRUE.
<em>c. The sample is initially a solid.</em> FALSE. The sample is initially a liquid.
<em>d. The sample is initially a liquid. One or more phase changes will occur. </em>TRUE.
Answer:
52.0004 grams of mass of potassium superoxide is required
Explanation:
Let moles carbon dioxide gas be n at 22.0 °C and 767 mm Hg occupying 8.90 L of volume.
Pressure of the gas,P = 767 mm Hg = 0.9971 atm
Temperature of the gas,T = 22.0 °C = 295.15 K
Using an ideal gas equation to calculate the number of moles.


n = 0.3662 mol

According to reaction, 2 moles of carbon-dioxide reacts with 4 moles of potassium superoxide.
Then 0.3662 mol of of carbon-dioxide will react with:
of potassium superoxide.
Mass of 0.7324 mol potassium superoxide:
0.7324 mol × 71 g/mol = 52.0004 g
52.0004 grams of mass of potassium superoxide is required.
They are isotopes because isotopes have the same number of protons (atomic number) but can have different numbers of neutrons + protons (atomic mass).
Answer:
94.1 %
Explanation:
We firstly determine the equation:
2H₂O + O₂ → 2H₂O₂
2 moles of water react to 1 mol of oxygen in order to produce 2 moles of oxygen peroxide.
We convert the mass of oxygen to moles:50 g . 1mol /32g = 1.56 mol
Certainly oxygen is the limiting reactant.
2 moles of water react to 1 mol of oxygen.
13 moles of water may react to 13/2 = 6.5 moles. (And we only have 1.56)
As we determine the limiting reactant we continue to the products:
1 mol of O₂ can produce 2 moles of H₂O₂
Then 1.56 moles of O₂ will produce (1.56 . 2) = 3.125 moles
We convert the moles to mass: 3.125 mol . 34 g/mol= 106.25 g
That's the 100% yield or it can be called theoretical yield.
Percent yield = (Yield produced / Theoretical yield) . 100
(100g / 106.25 g) . 100 = 94.1 %