The percentage increase in staff was 60.6%.
Answer:
The sum of a rational number and an irrational number is irrational." By definition, an irrational number in decimal form goes on forever without repeating (a non-repeating, non-terminating decimal). By definition, a rational number in decimal form either terminates or repeats.
Step-by-step explanation:
However, if the irrational parts of the numbers have a zero sum (cancel each other out), the sum will be rational. "The product of two irrational numbers is SOMETIMES irrational." Each time they assume the sum is rational; however, upon rearranging the terms of their equation, they get a contradiction (that an irrational number is equal to a rational number). Since the assumption that the sum of a rational and irrational number is rational leads to a contradiction, the sum must be irrational.
Answer:
Step-by-step explanation:
1). x² - 10x + a²
By using the formula of (a - b)² = a² - 2ab + b²
x² - 2(5)x + a²
Therefore, for a perfect square of the expression a should be equal to 5.
Therefore, (x² - 10x + 25) will be the answer.
2). x² + 2ax + 36
= x² + 2(a)x + 6²
For a perfect square of the given expression value of a should be 6.
x² + 2(a)x + 6² = x² + 2(6)x + 6²
= (x + 6)²
Therefore, x² + 12x + 36 will be the answer.
3). 

To make this expression a perfect square,
a² = 
= 
Therefore, the missing number will be
.
Given:

To verify:
for the given values.
Solution:
We have,

We need to verify
.
Taking left hand side, we get


Taking LCM, we get




Taking right hand side, we get



Taking LCM, we get


Now,

Hence proved.