Answer:
A simple pendulum with a period of 1 second will have a length of 0.25 meters or 25 centimeters
Explanation:
hope it helps u☺☺
Using the two kinematic equations that can be used for this problem are:
Vf = Vi + at and d=Vit +(1/2)*at^2
Since Vi (initial velocity) = 0
The equations can further be simplified where a is the acceleration, t is the time, Vf is the final velocity which is 70 miles per hour and d is 6 miles
Vf = at
70 = at
a = 70/t---equation 1
d=(1/2)*a*(t^2)
6 = (1/2)*a*(t^2) ---equation 2
Substituting equation 1 to equation 2.
6= (1/2)*(70/t)*(t^2)
6= 35t
t= 0.17142 hours or 10.28571 mins or 617.14 sec
Explanation:
Given
mass of the rock is 10 kg
Force requires to hold the rock is equal to its weight
Weight is given by the product of mass and acceleration due to gravity
Weight on the earth surface

Weight on the moon surface

So, the force holding the rock on earth is approximately 6 times the force on the moon.
Answer:
1 V / div
Explanation:
Solution:
- The vertical scale has eight divisions.
- If each division is set to equal 1 volt, the display will show 0 to 8 volts.
- This is okay in a 0 to 5 volt variable sensor such as a throttle position (TP) sensor.
- The volts per division (V/div) should be set so that the entire anticipated waveform can be viewed.
Answer:
V1 =8.1 m/s
Explanation:
height at highest point (h2) = 4.1 m
height at lowest point (h1) = 0.8 m
acceleration due to gravity (g) = 9.8 m/s^{2}
from conservation of energy, the total energy at the lowest point will be the same as the total energy at the highest point. therefore
mgh1 +
= mgh2 + 
where
- speed at highest point = V2
- speed at lowest point = V1
- mass of the girl and swing = m
- at the highest point, the speed is minimum (V1 = 0)
- at the lowest point the speed is maximum (V2 is the maximum speed)
- therefore the equation becomes mgh1 +
= mgh2
m(gh1 +
) = m(gh2)
gh1 +
= gh2
V1 = 
now we can substitute all required values into the equation above.
V1 = 
V1 = 
V1 =8.1 m/s