Answer:
Moment of Inertia, I = 0.016 kgm²
Explanation:
Mass of the ball, m = 0.20 kg
Length of the pitcher's arm, l = 0.28
Radius of the circular arc, r = 0.28 m
Moment of Inertia is given by the formula:
I = mr²
I = 0.20 * 0.28²
I = 0.20 * 0.0784
I = 0.01568
I = 0.016 kgm²
It must have a medium. It must travel in empty space. Mechanical waves are waves which needs medium of propogation.
Answer:
a. 8.96 m/s b. 1.81 m
Explanation:
Here is the complete question.
a) A long jumper leaves the ground at 45° above the horizontal and lands 8.2 m away.
What is her "takeoff" speed v
0
?
b) Now she is out on a hike and comes to the left bank of a river. There is no bridge and the right bank is 10.0 m away horizontally and 2.5 m, vertically below.
If she long jumps from the edge of the left bank at 45° with the speed calculated in part a), how long, or short, of the opposite bank will she land?
a. Since she lands 8.2 m away and leaves at an angle of 45 above the horizontal, this is a case of projectile motion. We calculate the takeoff speed v₀ from R = v₀²sin2θ/g. where R = range = 8.2 m.
So, v₀ = √gR/sin2θ = √9.8 × 8.2/sin(2×45) = √80.36/sin90 = √80.36 = 8.96 m/s.
b. We use R = v₀²sin2θ/g to calculate how long or short of the opposite bank she will land. With v₀ = 8.96 m/s and θ = 45
R = 8.96²sin(2 × 45)/9.8 = 80.2816/9.8 = 8.192 m.
So she land 8.192 m away from her bank. The distance away from the opposite bank she lands is 10 - 8.192 m = 1.808 m ≅ 1.81 m
Answer;
=15855.40 kg/m^3
Explanation;
Volume (V) of the cylinder = pi x r^2 x h
V = 3.14 x (44/2 x 10^-3)^2 x 41.5 x 10^-3
V = 6.307 x 10^-5 m^3
By density = m/V
mass = 1 kg
density = 1/(6.307 x 10^-5) = 15855.40 kg/m^3
Answer: A device that uses infrared sensors.
Explanation: