In reaction 1 of the Krebs cycle, acetyl‑CoA formed in the pyruvate dehydrogenase reaction condenses with the four‑carbon compound to form <em>citrate </em>with the elimination of coenzyme A. Since the product has three carboxyl groups, this pathway is referred to as the cycle. In reaction 2 of the Krebs cycle, this product then undergoes to form<em> isocitrate. </em>The enzyme is called aconitase because the compound cis‑aconitate is the <em>intermediate product</em> of the reaction. Reaction 3 eliminates CO2 to form the five‑carbon dicarboxylic acid <em>α-cetoglutarate. </em>Oxidation also occurs, with electrons transferred from the substrate to <em>COO-</em> . Consequently, this reaction is an oxidative decarboxylation.
In the image, you can see the reaction 2 in Krebs cycle is a two steps reaction with an intermediate cis-aconitase and a product called isocitrate.
The subatomic particle that gives off visible light is electrons
The correct option is C. The amount of MgCl2. we know this because <span>no matter how much you increase KOH, if you dont increase Mgcl2, the amount of Mg(OH)2 remains the same. Hope this works for you</span>
A mole of any chemical compound contains the same number of molecules - about 6.022 × 10²³ molecules.
So, 1 mole of H₂O₂, 1 mole of C₂H₂ and 1 mole of CO contain the same number of molecules.
Answer:
56.28 g
Explanation:
First change the grams of oxygen to moles.
(50.00 g)/(32.00 g/mol) = 1.5625 mol O₂
You have to use stoichiometry for the next part. Looking at the equation, you can see that for every 2 moles of H₂O, 1 mole of O₂ is produced. Convert from moles of O₂ to moles of H₂O using this relation.
(1.5625 mol O₂) × (2 mol H₂O/1 mol O₂) = 3.125 mol H₂O
Now convert moles of H₂O to grams.
(3.125 mol) × (18.01 g/mol) = 56.28125 g
Convert to significant figures.
56.28125 ≈ 56.28