The theoretical yield of NaBr given that 2.36 moles of FeBr₃ reacts is 7.08 moles
<h3>Balanced equation </h3>
2FeBr₃ + 3Na₂S → Fе₂S₃ + 6NaBr
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
<h3>How to determine the theoretical yield of NaBr</h3>
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
Therefore,
2.36 moles FeBr₃ will react to produce = (2.36 × 6) / 2 = 7.08 moles of NaBr
Therefore,
Thus, the theoretical yield of NaBr is 7.08 moles
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
Answer:
The 197Au isotope has 79 protons, 79 electrons and 118 neutrons
Explanation:
Step 1: The isotope = 197Au
Step 2: Calculate neutrons, electrons and protons
197 = Number of protons + number of neutrons
Isotopes always have the same proton number ( is the same as the atomic number). For Gold (Au) is this 79.
The number of electrons is equal to the number of protons in a neutral atom. Since we have 79 protons, there are also 79 electrons.
All isotopes of Au have a different number of neutrons.
The number of neutrons = 197 -79 = 118 neutrons
The 197Au isotope has 79 protons, 79 electrons and 118 neutrons
Answer:
The advantages described below
Explanation:
Advantages of a balanced chemical equation versus word equation:
- easier to read: chemical equations typically only take one line and they include all the relevant information needed. They are short-hand notations for what we describe in words.
- balanced chemical equations show molar ratio in which reactants react and the molar ratio of the products. Those are coefficients in front of the species. This is typically not included in a word equation, for example, hydrochloric acid reacts with potassium hydroxide. The latter statement doesn't describe the molar ratio and stoichiometry.
- includes relevant information, such as catalysts, temperature and pressure above the arrow in the equation. We wouldn't have this in a word equation most of the time.
- shows the stoichiometry of each compound itself, e. g. if we state 'ammonia', we don't know what atoms it consists of as opposed to
. - includes states of matter: aqueous, liquid, gas, solid. This would often be included in a word equation, however.
Answer:
Cd is oxidized during the discharge of the battery
Explanation:
Based on the reaction:
2 NiOOH + Cd + 2H₂O → 2Ni(OH)₂ + Cd(OH)₂
And knowing Oxygen and hydrogen never change its charge, we must to find oxidation state of Ni and Cd before and after the reaction:
<em>Ni:</em>
In NiOOH: 2 O = -2*2 = -4 + 1H = +1, = -4 + 1 = -3. And as the molecule is neutral, Ni is 3+
In Ni(OH)₂: OH = -1. As there are 2 OH = -2. That means Ni is +2
The Ni is gaining one electron, that means is been reduced
<em>Cd:</em>
Cd before reaction is as pure solid with oxidation state = 0
Cd after the reaction is as Cd(OH)₂: 2 OH = -2. That means Cd is +2
The Cd is loosing 2 electrons, that means is the species that is oxidized.