Answer:
Approximately 1.9 kilograms of this rock.
Explanation:
Relative atomic mass data from a modern periodic table:
To answer this question, start by finding the mass of Pb in each kilogram of this rock.
89% of the rock is
. There will be 890 grams of
in one kilogram of this rock.
Formula mass of
:
.
How many moles of
formula units in that 890 grams of
?
.
There's one mole of
in each mole of
. There are thus
of
in one kilogram of this rock.
What will be the mass of that
of
?
.
In other words, the
in 1 kilogram of this rock contains
of lead
.
How many kilograms of the rock will contain enough
to provide 1.5 kilogram of
?
.
I can help with that!
<span>-Boron (B)
-Silicon (Si)
-Germanium (Ge)
-Arsenic (As)
-Antimony (Sb)
-Tellurium (Te)
-Polonium (Po)
<span>-Astatine (At)</span></span>
C16H32O2(aq) --> 16CO2(g) + 16H2O(l) ... said its wrong though?
<span>This is because you haven't added any oxygen needed for the combustion, so your equation does'nt balance. Also a solution in water [aq] doesn't burn! </span>
<span>Try </span><span>C16H32O2(s) + 23O2(g) --> 16CO2(g) + 16H2O(l)
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Answer:

Explanation:
The number of valence electrons tells us the group number of the neutral atom.
The atom has 4 valence electrons.
The atom is in group 4.