The right answer is 2.
The number of protons contained in a nucleus (called an atomic number) is characteristic of a chemical element. For a given atomic number, the number of neutrons defines different "types" of this element: isotopes. The variation of the number of protons of the nucleus of an atom, during a nuclear reaction for example, causes a change of the element studied.
Answer:
<h2>464.85 mL</h2>
Explanation:
The new volume can be found by using the formula for Boyle's law which is

Since we're finding the new volume

100.7 kPa = 100,700 Pa
95.1 kPa = 95,100 Pa
We have

We have the final answer as
<h3>464.85 mL</h3>
Hope this helps you
Answer:
the correct answer is 17 significant figures
Answer:
18 g
Explanation:
We'll begin by converting 500 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
500 mL = 500 mL × 1 L / 1000 mL
500 mL = 0.5 L
Next, we shall determine the number of mole of the glucose, C₆H₁₂O₆ in the solution. This can be obtained as follow:
Volume = 0.5 L
Molarity = 0.2 M
Mole of C₆H₁₂O₆ =?
Molarity = mole / Volume
0.2 = Mole of C₆H₁₂O₆ / 0.5
Cross multiply
Mole of C₆H₁₂O₆ = 0.2 × 0.5
Mole of C₆H₁₂O₆ = 0.1 mole
Finally, we shall determine the mass of 0.1 mole of C₆H₁₂O₆. This can be obtained as follow:
Mole of C₆H₁₂O₆ = 0.1 mole
Molar mass of C₆H₁₂O₆ = (12×6) + (1×12) + (16×6)
= 72 + 12 + 96
= 180 g/mol
Mass of C₆H₁₂O₆ =?
Mass = mole × molar mass
Mass of C₆H₁₂O₆ = 0.1 × 180
Mass of C₆H₁₂O₆ = 18 g
Thus, 18 g of glucose, C₆H₁₂O₆ is needed to prepare the solution.
Answer and Explanation:
In H2O molecules, due to formation of intermolecular hydrogen bonds, there is molecular association. Large amount of energy is required to break these intermolecular hydrogen bonds. Intermolecular hydrogen bonding is not possible in H2S. Hence, its boiling point is lower and is a gas.