Molality is obtained by dividing the number of moles of solute by the mass in kilogram of the solvent. None of the dimensions is dependent in temperature. On the other hand, molarity is obtained by dividing the number of moles of solute by the volume in liters of the solution. Volume is temperature dependent.
Isn't it a because in b at the start of the equation the E in Fe just disappeared
Answer:
Energy produced deep inside Earth heats rock in the mantle. ... As it becomes less dense, the heated rock rises toward Earth's surface. The cooler, denser rock surrounding the heated rock sinks, as Figure 5 shows. In this way, heat inside Earth moves toward the cooler crust.
Explanation:
do you like my og name
Atomic number is same as the number of protons in the element which is further equal to the number of electrons. As the number of electrons increases in the element, the atomic number of the element also increases.
In periodic table, elements are arranged in the groups, and these groups are columns starting from 1 to 18, elements are arranged in increasing order of atomic number. Elements are placed with difference of one atomic number.
First four elements present in the periodic table is:
atomic number is one (1).
atomic number is two (2).
atomic number is three (3).
atomic number is four (4).
Thus, the series of atomic numbers that represents the ordering of consecutive elements within the periodic table is the last option - 1, 2, 3, 4...
<h3>
Answer:</h3>
0.144 moles
<h3>
Explanation:</h3>
- The relationship between mass of a compound, number of moles and molar mass of the compound is given by;
- Number of moles = Mass ÷ Molar mass
- Molar mass is equivalent to the relative formula mass of the compound that is calculated the atomic masses of the elements making the compound.
In this case;
Our compound, KClO3 will have a molar mass of;
= 39 + 35.5 + 4(16)
= 138.5 g/mol
Mass of KClO3 is 20 g
Therefore;
Number of moles = 20 g ÷ 138.5 g/mol
= 0.144 moles
Thus, the number of moles in 20 g of KClO3 is 0.144 moles