Answer:
A_resulting = 0.2 m
Explanation:
Let's analyze the impact of the pulse with the pole, this is a fixed obstacle that does not move therefore by the law of action and reluctant, the force that the pole applies on the rope is of equal magnitude to the force of the rope on the pole (pulse), but opposite directional, so the reflected pulse reverses its direction and sense.
With this information we analyze a point on the string where the incident pulse is and each reflected with an amplitude A = 0.1 m, the resulting is
A_res = 2A
A_resultant = 2 .01
A_resulting = 0.2 m
Answer:
P = 2439.5 W = 2.439 KW
Explanation:
First, we will find the mass of the water:
Mass = (Density)(Volume)
Mass = m = (1 kg/L)(10 L)
m = 10 kg
Now, we will find the energy required to heat the water between given temperature limits:
E = mCΔT
where,
E = energy = ?
C = specific heat capacity of water = 4182 J/kg.°C
ΔT = change in temperature = 95°C - 25°C = 70°C
Therefore,
E = (10 kg)(4182 J/kg.°C)(70°C)
E = 2.927 x 10⁶ J
Now, the power required will be:

where,
t = time = (20 min)(60 s/1 min) = 1200 s
Therefore,

<u>P = 2439.5 W = 2.439 KW</u>
Answer:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
Explanation:
a.If we increase the wind velocity, the maximum vertical dispersal height will decrease, while the rate of diffusion will increase
b.If we increase the humidity, the maximum vertical dispersal height will increase after 24 hours.
c.If we increase the lapse rate, the maximum vertical dispersal height of the pollutants will increase
FORCE-physical power or strength possessed by a living being:
He used all his force in opening the window.
MOTION-the action or process of moving or of changing place or position; movement.
Answer:

Explanation:
We are asked to find the final velocity of the boat.
We are given the initial velocity, acceleration, and time. Therefore, we will use the following kinematic equation.

The initial velocity is 2.7 meters per second. The acceleration is 0.15 meters per second squared. The time is 12 seconds.
= 2.7 m/s - a= 0.15 m/s²
- t= 12 s
Substitute the values into the formula.

Multiply the numbers in parentheses.




Add.

The final velocity of the boat is <u>4.5 meters per second in the positive direction.</u>