Ok i will answer for real this time. Please give me brainliest.
<span>The Answerr is:
5.12*10^15. Since e=h*f, f=e/h. 3.4*10^(-18)/h.
</span>i am so sorry i was doing a challenge and i needed answers to get 100 pts.
Hope I Helped
~TeenOlafLover <3
Answer:
Deltoid Force, 
Additional Information:
Some numerical information are missing from the question. However, I will derive the formula to calculate the force of the deltoid muscle. All you need to do is insert the necessary information and calculate.
Explanation:
The deltoid muscle is the one keeping the hand arm in position. We have two torques that apply to the rotating of the arm.
1. The torque about the point in the shoulder for the deltoid muscle,
2. The torque of the arm,
Assuming the arm is just being stretched and there is no rotation going on,
= 0
= 0
⇒ 

Where,
is radius of the deltoid
is the force of the deltiod
is the angle of the deltiod
is the radius of the arm
is the force of the arm ,
which is the mass of the arm and acceleration due to gravity
is the angle of the arm
The force of the deltoid muscle is,

but
,
∴ 
Answer:
The concentration of OH⁻ in the mixture is 0.05 M
Explanation:
The reaction of neutralization between HCl and NaOH is the following:
H⁺(aq) + OH⁻(aq) ⇄ H₂O(l)
The number of moles of HCl is:

Similarly, the number of moles of NaOH is:

Now, from the reaction of HCl and NaOH we have the following number of moles of NaOH remaining:

Finally, the concentration of OH⁻ in the mixture is:
Therefore, the concentration of OH⁻ in the mixture is 0.05 M.
I hope it helps you!
Answer:
3.0 seconds
Explanation:
We can solve the problem by considering the horizontal motion of the ball only. In fact, the ball moves by uniform motion (constant speed) along the horizontal direction, since there are no forces acting in this direction. The horizontal speed of the ball is given by:

and it does not change during the motion.
We also know that the ball travels a horizontal distance of d = 60 m, so we can find the time it takes to cover the distance by using the equation:
