Answer:

Explanation:
Given data
length=100mm
Diameter=5mm
Thermal conductivity=5 W/m.K
Power=50 W
Temperature=25°C
The temperature of heater surface follows from the rate equation written as:

Where S can be estimated from the conduction shape factor for a vertical cylinder in semi infinite medium

Substitute the given values
![S=\frac{2\pi (0.1m)}{ln[\frac{4*0.1m}{0.005m} ]}\\ S=0.143m](https://tex.z-dn.net/?f=S%3D%5Cfrac%7B2%5Cpi%20%280.1m%29%7D%7Bln%5B%5Cfrac%7B4%2A0.1m%7D%7B0.005m%7D%20%5D%7D%5C%5C%20S%3D0.143m)
The temperature of heater is then:

The temperature reached by the heater when dissipating 50 W with the surface of the block at a temperature of 25°C.

Sorry I had the answer but it wont let me type numbers :(.:
Answer:
B. The escape speed of the Moon is less than that of the Earth; therefore, less energy is required to leave the Moon.
Explanation:
Since the speed required to escape from the gravitational attraction of the Moon is less than the speed required to escape from the gravitational attraction of the Earth, less energy is required to travel from the Moon to the Earth, than is required to travel from the Earth to the Moon. This is because the kinetic energy is directly proportional to the square of the velocity.
Answer:
Straight line in the direction of the tangential velocity the ball had at the moment the string broke
Explanation:
After the string breaks, the ball now disconnected from the centripetal force that was exerted via the string, continues its travel in a straight line in the direction of the tangential velocity it had at the moment the string broke.
The second one because you don't get shocked by plugging in something you can get electricted by putting something thin in the outlet then it will send a shock to your hand