Answer:
(a) T = 2987.6 k
(b) T = 19986.2 k
Explanation:
The temperature of a star in terms of peak wavelength can be given by Wein's Displacement Law, which is as follows:

where,
T = Radiated surface temperature
= peak wavelength
(a)
here,
= 970 nm = 9.7 x 10⁻⁷ m
Therefore,

<u>T = 2987.6 k</u>
(b)
here,
= 145 nm = 1.45 x 10⁻⁷ m
Therefore,

<u>T = 19986.2 k</u>
Answer:
82.1 km
Explanation:
We need to resolve each displacement along two perpendicular directions: the east-west direction (let's label it with x) and the north-south direction (y). Resolving each vector:

Vector B is 48 km south, so:

Finally, vector C:

Now we add the components along each direction:

So, the resultant (which is the distance in a straight line between the starting point and the final point of the motion) is

Acceleration formulae is:
a=Fnet/mass
According to the question
a=7500N/1500kg
a=5m/s sq.