It's angle of reflection must be 41 degrees
we know, by the first law of reflection that angle of incidence is always equal to angle of reflection..........
<h2>Answer: 10.52m</h2><h2 />
First, we have to establish the <u>reference system</u>. Let's assume that the building is on the negative y-axis and that the brick was thrown at the origin (see figure attached).
According to this, the initial velocity
has two components, because the brick was thrown at an angle
:
(1)
(2)
(3)
(4)
As this is a projectile motion, we have two principal equations related:
<h2>
In the x-axis:
</h2>
(5)
Where:
is the distance where the brick landed
is the time in seconds
If we already know
and
, we have to find the time (we will need it for the following equation):
(6)
(7)
<h2>
In the y-axis:
</h2>
(8)
Where:
is the height of the building (<u>in this case it has a negative sign because of the reference system we chose)</u>
is the acceleration due gravity
Substituting the known values, including the time we found on equation (7) in equation (8), we will find the height of the building:
(9)
(10)
Multiplying by -1 each side of the equation:
>>>>This is the height of the building
Answer:
(a) Melting point is 136.8°C
(b) Melting point is 278.24°F
Boiling point is 832.28°F
(c) Melting point is 409.8K
Boiling point is 717.6K
Explanation:
(a) 586.1°F = 5/9(586.1 - 32)°C = 307.8°C
Melting point = 444.6°C - 307.8°C = 136.8°C
(b) Melting point = 136.8°C = (9/5×136.8) + 32 = 278.24°F
Boiling point = 444.6°C = (9/5×444.6) + 32 = 832.28°F
(c) Melting point = 136.8°C = 136.8 + 273 = 409.8K
Boiling point = 444.6°C = 444.6 + 273 = 717.6K
Answer:
magnitude of net magnetic field at given point is

Explanation:
As we know that magnetic field due to a long current carrying wire is given as

here we we will find the magnetic field due to wire which is along x axis is given as

r = 2 m
now we have

into the plane
Now similarly magnetic field due to another wire which is perpendicular to xy plane is given as

r = 2 m
now we have

along + x direction
Since the two magnetic field is perpendicular to each other
So here net magnetic field is given as

