The speed of cart b is 6m/s while the total momentum of the systmen is 4200 kg m/s
<h3>Conservation of Linear Momentum</h3>
Given Data
- Mass of cart one M1 = 150kg
- Initial Velocity U1 = 8m/s
Mass of cart two M2 = 150kg
Velocity U2 = 6m/s
Applying the principle of conservation of linear momentum we have
M1U1+M2U2 = M1V1+ M2V2
a. what is the speed of cart b after collision
substituting our given data we have
150*8+ 150*6 = 150*5+150*V2
1200 + 900 = 1200+ 150V2
2100 - 1200 = 150V2
900 = 150V2
Divide both sides by 150
V2 = 900/150
V2 = 6m/s
b. what is the total momentum of the system before and after collision
Total Momentum in the system is
Total momentum = Momentum before Impact+ Momentum after Impact
Total momentum = M1U1+M2U2 + M1V1+ M2V2
Total momentum = 1200 + 900 + 1200+ 900
Total momentum = 4200 kg m/s
Learn more about Conservation of Linear Momentum here:
brainly.com/question/7538238
Answer:
24.5987 cm
Explanation:
A = 1900 cm^2
Let r be the radius of disc.
The area of disc is given by
A = π r²
Where, π = 31.4
1900 = 3.14 x r²
r² = 605.095
r = 24.5987 cm
Wind speed and air temperature are used to calculate a windchill factor.
<u>Explanation:</u>
<u></u>
Wind-chill factor is the reduction of body temperature due to the passing flow of lower-temperature air.
The air temperature value is always higher than the wind chill numbers. the heat index will be used if the apparent temperature is higher than the air temperature.So, Wind speed and air temperature are mainly used to calculate a windchill factor.
There are many ways, the surface loses its heat through conduction, evaporation,radiation, and convection.The rate of convection depends on the difference in temperature between the surface and the fluid surrounding the surface and the velocity of that fluid with respect to the surface. The air around the warm surface will be heated, an insulating layer of warm air forms against the surface.The layer becomes a boundary between two. As the wind speed is high the surface cools down rapidly.
The energy bar eaten by Sheila has chemical energy locked up inside it. This chemical energy is converted to mechanical energy in form of potential and kinetic energy and this in turn is converted to heat energy as the run progresses. Thus, the energy changes are: chemical energy to mechanical energy [kinetic and potential] and finally to heat energy.
Answer:
the angular velocity of the carousel after the child has started running =

Explanation:
Given that
the mass of the child = m
The radius of the disc = R
moment of inertia I = 
change in time = 
By using the torque around the inertia ; we have:
T = I×∝
where
R×F = I × ∝
R×F =
∝
F =
∝
∝ =
( expression for angular angular acceleration)
The first equation of motion of rotating wheel can be expressed as :

where ;
∝ =
Then;


∴ the angular velocity of the carousel after the child has started running =
