Answer:
Explanation:
In order to measure the coefficient of friction , we apply external force to move the body . When external force comes in motion , we adjust the external force so that it moves with zero acceleration or uniform velocity . In this case external force becomes equal to kinetic frictional force and then net force becomes zero because
net force = mass x acceleration = m x 0 = 0
Now frictional force = μ mg where μ is coefficient of kinetic friction
so F = μ mg where F is external force applied
μ = F / mg
Hence , to make external force equal to frictional force , it is necessary to make acceleration of body zero .
<u>Note that</u>:
The gravitational potential energy = 
where m: is the mass, g: the acceleration due to the gravity and h is the height from the earth surface
Then, we can increase the gravitational potential energy by increasing the mass or the height from the earth surface
<u>In our question</u>, we can increase the gravitational potential energy by
<u>A) Strap a boulder to the car so that it wights more.</u>
Am not really sure but what i see is D
Answer:
DU = 120 Joules
Explanation:
Given the following data;
Quantity of energy = 200 J
Work = 80 J
To find the change in internal energy;
Mathematically, the change in internal energy of a system is given by the formula;
DU = Q - W
Where;
DU is the change in internal energy.
Q is the quantity of energy.
W is the work done.
Substituting into the formula, we have;
DU = 200 - 80
DU = 120 Joules
Okay so yeah u have to minus then subtract then decide it it’s a method i was taught to do