1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
3 years ago
12

Whose contributions to astronomy explained how planets were held in their orbits?

Physics
1 answer:
ankoles [38]3 years ago
3 0

Answer:

D newton

Explanation:

he did extensive research on gravity, and gravity is what holds planets in orbits.

You might be interested in
A 46.8-g golf ball is driven from the tee with an initial speed of 58.8 m/s and rises to a height of 24.7 m. (a) Neglect air res
Andre45 [30]

Answer:

a) the kinetic energy of the ball at its highest point is 69.58 J

b) its speed when it is 8.11 m below its highest point is 55.97 m/s

Explanation:

Given that;

mass of golf ball m = 46.8 g = 0.0468 kg

initial speed of the ball v₁ = 58.8 m/s

height h = 24.7 m

acceleration due to gravity = 9.8 m/s²

the kinetic energy of the ball at its highest point = ?

from the conservation of energy;

Kinetic energy at the highest point will be;

K.Ei + P.Ei = KEf + PEf

now the Initial potential energy of the ball P.Ei = 0 J

so

1/2mv² + 0 J = KEf + mgh

K.Ef = 1/2mv² - mgh

we substitute

K.Ef = [1/2 × 0.0468 × (58.8 )²] - [0.0468 × 9.8 × 24.7]

K.Ef  = 80.904 - 11.3284

K.Ef = 69.58 J

Therefore, the kinetic energy of the ball at its highest point is 69.58 J

b) when the ball is 8.11 m below the highest point, speed = ?

so our raw height h' will be ( 24.7 m - 8.11 m) = 16.59 m

so our velocity will be v₂

also using the principle of energy conservation;

K.Ei + P.Ei = KEh + PEh

1/2mv² + 0 J = 1/2mv₂² + mgh'

1/2mv₂² = 1/2mv² - mgh'

multiply through by 2/m

v₂² = v² - 2gh'

v₂ = √( v² - 2gh' )

we substitute

v₂ = √( (58.8)² - 2×9.8×16.59 )

v₂ = √( 3457.44 - 325.164 )  

v₂ = √( 3132.276 )

v₂ = 55.97 m/s

Therefore, its speed when it is 8.11 m below its highest point is 55.97 m/s

5 0
3 years ago
Which equation describes the fastest runner?
irina [24]
I think the answer will be A
7 0
3 years ago
Read 2 more answers
A 0.150-kg cart that is attached to an ideal spring with a force constant (spring constant) of 3.58 N/m undergoes simple harmoni
SVETLANKA909090 [29]

Answer:

E = 0.01 J

Explanation:

Given that,

The mass of the cart, m = 0.15 kg

The force constant of the spring, k = 3.58 N/m

The amplitude of the oscillations, A = 7.5 cm = 0.075 m

We need to find the total mechanical energy of the system. It can be given by the formula as follows :

E=\dfrac{1}{2}kA^2

Put all the values,

E=\dfrac{1}{2}\times 3.58\times (0.075)^2\\\\=0.01\ J

So, the value of total mechanical energy is equal to 0.01 J.

3 0
2 years ago
In which direction does a convergent boundary move?
VladimirAG [237]

Answer:

Toward each other teehee merry christmas

Explanation:

7 0
3 years ago
Read 2 more answers
In an engine, an almost ideal gas is compressed adiabatically to half its volume. In doing so, 1850 J of work is done on the gas
hammer [34]

Answer:

The value of change in internal energy of the gas = + 1850 J

Explanation:

Work done on the gas (W) =  - 1850 J

Negative sign is due to work done on the system.

From the first law  we know that Q = Δ U + W ------------- (1)

Where Q = Heat transfer to the gas

Δ U = Change in internal energy of the gas

W = work done on the gas

Since it is adiabatic compression of the gas so heat transfer to the gas is zero.

⇒ Q = 0

So from equation (1)

⇒ Δ U = - W ----------------- (2)

⇒ W = - 1850 J (Given)

⇒ Δ U = - (- 1850)

⇒ Δ U = + 1850 J

This is the value of change in internal energy of the gas.

7 0
3 years ago
Other questions:
  • Dr. Perez is part of a team of researchers who are working on designing and building a probe to study solar flares. What conditi
    10·2 answers
  • How much force should a mother exert to lift a 5.0-kg child​
    6·1 answer
  • Part b suppose the magnitude of the gravitational force between two spherical objects is 2000 n when they are 100 km apart. what
    8·2 answers
  • In the early 19th century Christian Doppler, an Austrian physicist, proposed a theory regarding the properties of a moving sourc
    8·1 answer
  • A wrench 0.500 m long is applied to a nut with a force of 80.0 N. Because of the cramped space, the force must be exerted upward
    10·1 answer
  • What is the ecliptic, and why is it tilted with respect to the celestial equator?
    15·1 answer
  • Why do windows have two panes of glass separated by a layer of air
    5·1 answer
  • According to the relationship between torque and angular acceleration, what happens when you have more torque (given a constant
    6·1 answer
  • A standard inverting op-amp circuit has an R1 of 10 kΩ and an Rf of 220 kΩ. If the offset current is 100 nA the output offset vo
    14·1 answer
  • Helppp pls yes or no question
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!