I think its either C or D. I tried, couldn't figure the last part out. Hope this helped though!! Have a great day! :D
Answer:
The correct answer is option 'c': Smaller stone rebounds while as larger stone remains stationary.
Explanation:
Let the velocity and the mass of the smaller stone be 'm' and 'v' respectively
and the mass of big rock be 'M'
Initial momentum of the system equals

Now let after the collision the small stone move with a velocity v' and the big roch move with a velocity V'
Thus the final momentum of the system is

Equating initial and the final momenta we get

Now since the surface is frictionless thus the energy is also conserved thus

Similarly the final energy becomes
\
Equating initial and final energies we get

Solving i and ii we get

Using this in equation i we get
Thus putting v = -v' in equation i we get V' = 0
This implies Smaller stone rebounds while as larger stone remains stationary.
Pictures you asked, I hope you like the pictures
Answer:
(a) decrease
Explanation:
Viscosity is the resistance which occur to flow of the fluid.
More the inter molecular forces between particles of the liquid, more the viscosity of liquid.
<u>Effect of temperature on viscosity:-</u>
Viscosity decreases with the increase in the temperature as forces among the particles decrease on increasing temperature. The kinetic energy of the particles of the liquid increases causing to move in more random motions and thus weaker inter molecular forces and this offer less resistance to the flow.
<u>Hence, viscosity of the liquids decrease with the increasing temperature.</u>
The base unit of time in the metric and SI system is the second.