Answer:
28,400 N
Explanation:
Let's start by calculating the pressure that acts on the upper surface of the hatch. It is given by the sum of the atmospheric pressure and the pressure due to the columb of water, which is given by Stevin's law:

On the lower part of the hatch, there is a pressure equal to

So, the net pressure acting on the hatch is

which acts from above.
The area of the hatch is given by:

So, the force needed to open the hatch from the inside is equal to the pressure multiplied by the area of the hatch:

Answer:
I) You walk barefoot on the hot street and it burns your toes.
II) When you get into a car with hot black leather in the middle of the summer and your skin starts to get burned.
Explanation:
In conduction mode of heat transfer we know that the energy is transferred from one system to other system due to direct contact of two bodies
Here due to this direct contact the energy is transferred via a given solid or liquid medium
In this type of heat transfer medium particles will remain in its own position only the energy is transferred.
So here we can say the correct answer will be
I) You walk barefoot on the hot street and it burns your toes.
II) When you get into a car with hot black leather in the middle of the summer and your skin starts to get burned.
To solve the problem it is necessary to apply the Malus Law. Malus's law indicates that the intensity of a linearly polarized beam of light, which passes through a perfect analyzer with a vertical optical axis is equivalent to:

Where,
indicates the intensity of the light before passing through the polarizer,
I is the resulting intensity, and
indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
Since we have two objects the law would be,

Replacing the values,



Therefore the intesity of the light after it has passes through both polarizers is 
Answer:
You pull on the oars. By the third law, the oars push back on your hands, but that’s irrelevant to the motion of the boat. The other end of each oar (the blade) pushes against the water. By the third law, the water pushes back on the oars, pushing the boat forward.
The parallel component is given by
F=180cos(25)=163.14N