Answer:
length of wire = 38.82 m
Explanation:
∴ 16 gauge ≡ 0.05082 in * ( 2.54 cm/in ) = 0.12908 cm
∴ m spool = 1 Lb = 453.592 g
∴ ρ = 8.92 g/cm³
cross section area:
⇒ A = π*D²/4 = π*(0.12908)²/4 = 0.0131 cm²
⇒ L = ((453.592 g) *(cm³/8.92 g)) / ( 0.0131 cm² )
⇒ L = 3881.765 cm * ( m/100cm) = 38.82 m
Answer:
C₆H₆
Explanation:
Each border of the figure represents 1 atom of carbon. We have 6 borders = 6 atoms of carbon.
Each atom of carbon form 4 bonds. All the carbons are doing a double bond and a single bond with other carbons. That means are bonded 3 times. The other bond (That is not represented in the figure. See the image) comes from hydrogens. As we have 6 carbons that are bonded each 1 with one hydrogen. There are six hydrogens and the molecular formula is:
<h3>C₆H₆</h3>
This structure is: Benzene
Answer:
Option d. 0.10 m Cr₂(SO₄)₃
Explanation:
Formula for the osmotic pressure is determined as:
π = M . R . T . i
So you have to take account the i (Van't Hoff factor, numbers of ions dissolved)
Urea is an organic compound, so the i value is 1
Zync acetate can be dissociated:
Zn(CH₃COO)₂ → 1Zn²⁺ + 2CH₃COO⁻
In this case, the i is 3. (you see, the stoichiometry of ions)
Cr₂(SO₄)₃ → 0.10 m
Chromium sulfate is dissociated:
Cr₂(SO₄)₃ → 2Cr³⁺ + 3SO₄⁻²
i = 5
BaI₂ → 0.16 m
BaI₂ → 1Ba²⁺ + 2I⁻
i = 3
Answer:
83.9g of sulfuric acid is the minimum mass you would need
1.73g of hydrogen would be produced
Explanation:
Based on the reaction:
2 Al(s) + 3 H₂SO₄(aq) → Al₂(SO₄)₃(aq) + 3 H₂(g)
2 moles of solid aluminium react with 3 moles of sulfuric acid. Also, two moles of Al produce 3 moles of hydrogen gas.
15.4g of Al are:
15.4g Al × (1mol / 26.98g) = 0.571 moles of Al.
Moles of sulfuric acid:
0.571 moles Al × (3 mol H₂SO₄ / 2 mol Al) = 0.8565 moles H₂SO₄
In grams:
0.8565 moles H₂SO₄ × (98g / 1mol) = <em>83.9g of sulfuric acid is the minimum mass you would need</em>
In the same way, moles of hydrogen produced are:
0.571 moles Al × (3 mol H₂ / 2 mol Al) = 0.8565 moles H₂
In grams:
0.8565 moles H₂ × (2.015g / 1mol) = <em>1.73g of hydrogen would be produced</em>