Copper has 29 electrons, and its electron configuration is:
1s2 2s2 2p6 3s2 3p6 3d10 4s1.
Therefore, copper has 1 valence electron.
Hope this helps~
Answer:
The minimum resistance is 25 ohms.
Explanation:
Resistance of each resistor is 100 ohms. When resistors are connected in parallel, the equivalent resistance is lowest. For parallel combination, the equivalent resistance is given by :

Here, all resistors are 100 ohms. So,

So, the minimum resistance is 25 ohms.
Answer:c
Explanation:
I think because ca^+2
It’s loses the ion and if u look back u would see that a cation is a t charge but it’s not Goan that electron it’s losing that electron
The first option, collapsed in on itself.
The star's core mass becomes so dense that the resulting gravity implodes the star.
Interesting enough, the third option is kindof true too...some large and tenacious black holes that absorb other stars will form incredibly bright accretion disks around their perimeter before filling absorbing the star.