Electronic configuration: The distribution or arrangement of electrons of a molecule or an atom in molecular or atomic orbitals.
Ground state electron configuration: The distribution of electrons of an atom or molecule around the nucleus with lower levels of energy.
Now,
stands for Ruthenium with atomic number 44. It is a metal and thus, has ability to lose electrons and, becomes positively charged ion.
One can write the electronic configuration with the help of atomic number and Afbau principle, Pauli exclusion principle etc.
Ground electronic Configuration is as follows:

Soft Hand notation: ![[Kr]4d^{7}5s^{1}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B7%7D5s%5E%7B1%7D)
Now, when ruthenium loses two electrons then it becomes
, thus electron configuration becomes
Soft Hand notation: ![[Kr]4d^{6}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B6%7D)
The ground state electronic configuration of Ruthenium is
and when it loses two electrons, then electronic configuration becomes
(
)
Answer:
2.343 g/ cm³
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Given data:
density = ?
volume= 350 cm³
mass= 820 g
Now we will put the values in the formula,
d= m/v
d= 820 g/ 350 cm³
d= 2.343 g/ cm³
The density of silicon is 2.343 g/ cm³
Answer:
A
Explanation:
because CO2 is carbon dioxide and CO is carbon monoxide. mono meaning one which in this case is monoxide.
Answer:
P(total pressure) = 504 mmHg = 504mm/760mm/atm = 0.663 atm
Explanation:
Apply Dalton's Law of Partial Pressures.
P(total) = ∑Partial Pressures = ∑(256mm + 198mm + 48mm) = 504 mmHg
P(total pressure) = 504 mmHg = 504mm/760mm/atm = 0.663 atm
Answer:
B: They are the results of many experiments over a long period of time.
Explanation: