Answer:
The work transfer per unit mass is approximately 149.89 kJ
The heat transfer for an adiabatic process = 0
Explanation:
The given information are;
P₁ = 1 atm
T₁ = 70°F = 294.2611 F
P₂ = 5 atm
γ = 1.5
Therefore, we have for adiabatic system under compression

Therefore, we have;

The p·dV work is given as follows;

Therefore, we have;
Taking air as a diatomic gas, we have;

The molar mass of air = 28.97 g/mol
Therefore, we have

The work done per unit mass of gas is therefore;

The work transfer per unit mass ≈ 149.89 kJ
The heat transfer for an adiabatic process = 0.
The controller determines if a(n) error exists by calculating the difference between the SP and the PV.
<h3>How does a
controller work in control system?</h3>
The Control system is one where it entails if the output is one that has an effect on the input quantity.
So it uses the PV(Process Variable) set against the SP(Setpoint) to know if an error exists.
So, The controller determines if a(n) error exists by calculating the difference between the SP and the PV.
Learn more about controller from
brainly.com/question/14617664
#SPJ1
Answer:
Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).
The physical dimension of the silicon is 10kg
Explanation:
Using the formular, Force, F = 1/2π√k/m
At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).
Hence, F = 1/2π√mw²/m = f ( f = frequency)
∴ f = F = mg, taking g = 9.8 m/s²
100 Hz = 9.8 m/s² X m
m = 100/9.8 = 10.2kg
Answer:
Hello Monk7294!
Answer:
Employee education
Explanation:
The most important countermeasure for social engineering is employee education. All the employees should be trained to keep confidential data safe. As a part of security education, organizations have to provide timely orientation about their security policy to new employees. The security policy should address the consequences of the breaches.
<em>- I Hope this helps Have an awesome day!</em>
<em>~ Chloe marcus <3</em>
Answer:

Explanation:
Using the expression shown below as:

Where,
is the number of vacancies
N is the number of defective sites
k is Boltzmann's constant = 
is the activation energy
T is the temperature
Given that:

N = 10 moles
1 mole = 
So,
N = 
Temperature = 425°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (425 + 273.15) K = 698.15 K
T = 698.15 K
Applying the values as:

![ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}](https://tex.z-dn.net/?f=ln%5B%5Cfrac%20%7B2.3%7D%7B6.023%7D%5Ctimes%2010%5E%7B-11%7D%5D%3D-%5Cfrac%20%7BQ_v%7D%7B1.38%5Ctimes%2010%5E%7B-23%7D%5Ctimes%20698.15%7D)
