Answer:
Engineers can design a train with a regenerative braking system
Explanation:
Assuming the point of the question is that the engineers want to focus on using energy efficiently when starting and stopping, they would likely want to consider a regenerative braking system. Such a system can store energy during braking so that it can be used during starting, reducing the amount of energy that must be supplied by an outside power source.
Answer: I would help you but I don’t know the answer, so sorry
Answer:
A vision statement describes what a company desires to achieve in the long-run, generally in a time frame of five to ten years, or sometimes even longer. It depicts a vision of what the company will look like in the future and sets a defined direction for the planning and execution of corporate-level strategies.
Explanation:
While companies should not be too ambitious in defining their long-term goals, it is critical to set a bigger and further target in a vision statement that communicates a company’s aspirations and motivates the audience. Below are the main elements of an effective vision statement:
-Forward-looking
-Motivating and inspirational
-Reflective of a company’s culture and core values
-Aimed at bringing benefits and improvements to the organization in the future
-Defines a company’s reason for existence and where it is heading
Answer:
The mass flow rate of steam m=5.4 Kg/s
Explanation:
Given:
At the inlet of turbine P=10 MPa ,T=500 C
AT the exit of turbine P=10 KPa ,x=0.9
Required power=5 MW
From steam table
<u> At 10 MPa and 500 C:</u>
h=3374 KJ/Kg ,s=6.59 KJ/Kg-K (Super heated steam table)
<u>At 10 KPa:</u>
=2675.1 KJ/Kg,
=417.51 KJ/Kg
= 7.3 KJ/Kg-K ,
=1.3 KJ/Kg-K
So enthalpy of steam at the exit of turbine
h= 
Now by putting the values
h= 417.51+0.9(2675.1- 417.51) KJ/Kg
h=2449.34 KJ/Kg
Lets take m is the mass flow rate of steam
So 
m=5.4 Kg/s
So the mass flow rate of steam m=5.4 Kg/s
Answer:
As the asteroid falls closer to the Earth's surface its <u>Gravitational</u> <u>Potential</u> energy <em>decreases</em> and its <u>Kinetic</u> energy <em>increases</em>.