Answer:
This is true
Explanation:
Because it mixes in with the earth making the earth more suitable for gardening and/or farming.
Answer:
The ideal gas law can be used in stoichiometry problems in which chemical reactions involve gases. Standard temperature and pressure (STP) are a useful set of benchmark conditions to compare other properties of gases. At STP, gases have a volume of 22.4 L per mole.
The gas laws describe and predict the behavior of gases with an explanation and experimental data
So the given statement is False.
2) The volume of gas can be calculated based on Avagadro's law
It states that the volume of a gas is directly proportional or varies with the moles of the gas. Higher the moles more the volume, condition is the pressure and temperature are constants in the two conditions
Thus as here the pressure and temperature of nitrogen gas is kept constant
V α moles
or

Where
V1 = 6 l
n1 = 0.50 mol
V2 = ?
n2 = 0.75 mol
On putting values
V2 = 6 X 0.75 / 0.5 = 9 L
so resulting volume of the gas will be 9L
<h3>
Answer:</h3>
Chlorine gas (Cl₂)
<h3>
Explanation:</h3>
- According to the Graham's law of diffusion, the diffusion rate of a gas is inversely proportional to the square root of its density or molar mass.
- Therefore, a lighter gas will diffuse faster at a given temperature compared to a heavy gas.
- Consequently, the heavier a gas is then the denser it is and the slower it diffuses at a given temperature and vice versa.
In this case we are given gases, CI₂
, H₂,He and Ne.
- We are required to identify the gas that will diffuse at the slowest rate.
- In other words we are required to determine the heaviest gas.
Looking at the molar mass of the gases given;
Cl₂- 70.91 g/mol
H₂- 2.02 g/mol
He - 4.00 g/mol
Ne- 20.18 g/mol
Therefore, chlorine gas is the heaviest and thus will diffuse at the slowest rate among the choices given.