Answer:
the oxidation number of hydrogen is +2, while oxygen is -2
Molecular formula: C8H6N2
Empirical formula: C4H3N
Answer:
0.056moles HF and 0.70M
Explanation:
When a strong acid is added to a buffer, the acid reacts with the conjugate base.
In the system, NaF and HF, weak acid is HF and conjugate base is NaF. The reaction of NaF with HCl (Strong acid) is:
NaF + HCl → HF + NaCl
Initial moles of NaF and HF in 60.0mL of solution are:
NaF:
0.0600L × (0.80mol / L)= 0.048 moles NaF
HF:
0.0600L × (0.80mol / L)= 0.048 moles HF
Then, the added moles of HCl are:
0.0200L × (0.40mol / L) = 0.008 moles HCl.
Thus, after the reaction, moles of HF produced are 0.008 moles + the initial 0.048moles of HF, moles of HF are:
<em>0.056moles HF</em>
<em></em>
In 20.0mL + 60.0mL = 80.0mL = 0.0800L, molarity of HF is:
0.056mol HF / 0.0800L = <em>0.70M</em>
I believe the answer is 4 carbons. Glycolysis involves break down of glucose to two molecules of pyruvic acid (3 carbons) under aerobic conditions. At the end of glycolysis the two pyruvate molecules undergoes pyruvate oxidation to capture the remaining energy in the form of ATP. A carboxyl group is removed from pyruvate and released in the form carbon dioxide, leaving a two carbon molecule which forms Acetyl-CoA (2 molecules). Acetyl-CoA then serves as a fuel for the citric acid cycle in the next stage of cellular respiration.
Answer:
Reaction products are shown below
Explanation:
- In cannizaro reaction, benzaldehyde produces benzoic acid and benzyl alcohol through disproportion.
- Here, a hydroxyl group first gives a nucleophilc addition at carbonyl center of benzaldehyde.
- Then a hydride transfer takes place to another molecule of benzaldehyde
- Thus, benzoic acid and benzyl alcohol are produced.
- Full reaction mechanism has been shown below