<u>Answer:</u> The
for the reaction is -1835 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
( × 4)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[4\times (-\Delta H_1)]+[1\times \Delta H_2]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B4%5Ctimes%20%28-%5CDelta%20H_1%29%5D%2B%5B1%5Ctimes%20%5CDelta%20H_2%5D)
Putting values in above equation, we get:

Hence, the
for the reaction is -1835 kJ.
Enzymes affect the rate of the reaction in both the forward and reverse directions; the reaction proceeds faster because less energy is required for molecules to react when they collide. Thus, the rate constant (k) increases. Figure 3: Lowering the Activation Energy of a Reaction by a Catalyst.
hope this helps!
(:
Symbol: Hg
Made of hydrargyrum
Atomic number: 80
Atomic weight: 200.59
Poor conductor if heat and an ok conductor for electricity. Primarily used for many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents.
Hope it helps!