So for this, we will be using synthetic division. To set it up, have the equation so that the divisor is -10 (since that is the solution of k + 10 = 0) and the dividend are the coefficients. Our equation will look as such:
<em>(Note that synthetic division can only be used when the divisor is a 1st degree binomial)</em>
- -10 | 1 + 2 - 82 - 28
- ---------------------------
Now firstly, drop the 1:
- -10 | 1 + 2 - 82 - 28
- ↓
- -------------------------
- 1
Next, you are going to multiply -10 and 1, and then combine the product with 2.
- -10 | 1 + 2 - 82 - 28
- ↓ - 10
- -------------------------
- 1 - 8
Next, multiply -10 and -8, then combine the product with -82:
- -10 | 1 + 2 - 82 - 28
- ↓ -10 + 80
- -------------------------
- 1 - 8 - 2
Next, multiply -10 and -2, then combine the product with -28:
- -10 | 1 + 2 - 82 - 28
- ↓ -10 + 80 + 20
- -------------------------
- 1 - 8 - 2 - 8
Now, since we know that the degree of the dividend is 3, this means that the degree of the quotient is 2. Using this, the first 3 terms are k^2, k, and the constant, or in this case k² - 8k - 2. Now what about the last coefficient -8? Well this is our remainder, and will be written as -8/(k + 10).
<u>Putting it together, the quotient is
</u>
Answer:
It will take at least 15 weeks
Step-by-step explanation:
12w+31 ≥ 205
Subtract 31 from each side
12w+31-31 ≥ 205-31
12w ≥ 174
Divide each side by 12
12w/12 ≥ 174/12
w ≥ 14.5
Rounding up to the nearest integer
w ≥ 15
It will take at least 15 weeks
Answer:
Step-by-step explanation:
If an exponential function is in the form of y = a(b)ˣ,
a = Initial quantity
b = Growth factor
x = Duration
Condition for exponential growth → b > 1
Condition for exponential decay → 0 < b < 1
Now we ca apply this condition in the given functions,
1). 
Here, (1 + 0.45) = 1.45 > 1
Therefore, It's an exponential growth.
2). 
Here, (0.85) is between 0 and 1,
Therefore, it's an exponential decay.
3). y = (1 - 0.03)ˣ + 4
Here, (1 - 0.03) = 0.97
And 0 < 0.97 < 1
Therefore, It's an exponential decay.
4). y = 0.5(1.2)ˣ + 2
Here, 1.2 > 1
Therefore, it's an exponential growth.
Answer:
B
Step-by-step explanation:
B cause
Hey! here is the answer
<u>b³+c
</u>b²c²