Answer: 0.392 m/s
Explanation:
The Doppler shift equation is:

Where:
is the actual frequency of the sound wave
is the "observed" frequency
is the speed of sound
is the velocity of the observer, which is stationary
is the velocity of the source, which are the red blood cells
Isolating
:


Finally:

Answer:
a) θ₁ = 23.14 °
, b) θ₂ = 51.81 °
Explanation:
An address network is described by the expression
d sin θ = m λ
Where is the distance between lines, λ is the wavelength and m is the order of the spectrum
The distance between one lines, we can find used a rule of proportions
d = 1/600
d = 1.67 10⁻³ mm
d = 1-67 10⁻³ m
Let's calculate the angle
sin θ = m λ / d
θ = sin⁻¹ (m λ / d)
First order
θ₁ = sin⁻¹ (1 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₁ = sin⁻¹ (3.93 10⁻¹)
θ₁ = 23.14 °
Second order
θ₂ = sin⁻¹ (2 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₂ = sin⁻¹ (0.786)
θ₂ = 51.81 °
The tensile stress of the wire supporting 2 kg mass is determined as 6.1 x 10⁷ N/m².
<h3>
Tensile stress of the wire</h3>
The tensile stress of the wire is calculated as follows;
σ = F/A
where;
A = πr² = πD²/4
where;
A = π x (0.64 x 10⁻³)²/4
A = 3.22 x 10⁻⁷ m²
σ = F/A = (mg)/A = (2 x 9.8)/( 3.22 x 10⁻⁷)
σ = 6.1 x 10⁷ N/m²
Learn more about tensile stress here: brainly.com/question/25748369
#SPJ1
Answer:
The height at point of release is 10.20 m
Explanation:
Given:
Spring constant : K= 5 x 10 to the 3rd power n/m
compression x = 0.10 m
Mass of block m= 0.250 kg
Here spring potential energy converted into potential energy,
mgh = 1/2 kx to the 2 power
For finding at what height it rise,
0.250 x 9.8 x h = 1/2 x 5 x 10 to the 3 power x (0.10)to the 2 power) - ( g= 9.8 m/8 to the 2 power
h= 10.20
Therefore, the height at point of release is 10.20 m
<h3><u>Answer;</u></h3>
= 21600 Joules or 21.6 Kilo joules
<h3><u>Explanation;</u></h3>
Electrical energy is given by the formula = VIt ;
where V is the voltage in volts, I is the current in Amperes, and t is time in seconds.
Voltage = 120 volts
Current = 3 amperes
Time = 60 seconds or 1 minute
Therefore;
Electrical energy = 120 × 3 × 60
<u> = 21600 Joules or 21.6 Kilo joules</u>