Velocity is defined by rate of change in the position
which we can also write as

while acceleration is defined as rate of change in velocity

so acceleration and velocity both are rate of change in position and rate of change in velocity with respect to time respectively
out of all above statement the correct answer must be
<u>Acceleration equals change in velocity divided by time. </u>
Answer:Visible light is a small part of the electromagnetic spectrum. The spectrum covers everything from gamma rays, x-rays, visible light, infrared, microwave and radio waves. Each part of the spectrum, including the different colors of visible light, have different wavelengths (the space between each wave).
Explanation:
Units of impulse: N • s, kg • meters per second
Explanation:
Impulse is defined in two ways:
1)
Impulse is defined as the product between the force exerted in a collision and the duration of the collision:

where
F is the force
is the time interval
Since the force is measured in Newtons (N) and the time is measured in seconds (s), the units for the impulse are
![[I] = [N][s]](https://tex.z-dn.net/?f=%5BI%5D%20%3D%20%5BN%5D%5Bs%5D)
So,
N • s
2)
Impulse is also defined as the change in momentum experienced by an object:

where the change in momentum is given by

where m is the mass and
is the change in velocity.
The mass is measured in kilograms (kg) while the change in velocity is measured in metres per second (m/s), therefore the units for impulse are
![[I]=[kg][m/s]](https://tex.z-dn.net/?f=%5BI%5D%3D%5Bkg%5D%5Bm%2Fs%5D)
so,
kg • meters per second
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
The Answer Is Lowering the amount of reactants
Answer:
Sarah is right
Explanation:
This is an exercise that differentiates between scalars and vectors.
A scalar is a number, instead a vector is a number that represents the module in addition to direction and sense.
In this case, the distance (scalar) traveled is a number, which is why it is worth 1500m, but the displacement is a vector and since the point where it leaves is the same point where the vector's modulus arrives is zero, so the DISPLACEMENT VECTOR is zero
consequently Sarah is right