Answer:
V₂ = 5.97 L
Explanation:
Given data:
Initial temperature = 9°C (9+273 = 282 K)
Initial volume of gas = 6.17 L
Final volume of gas = ?
Final temperature = standard = 273 K
Solution:
Formula:
The Charles Law will be apply to solve the given problem.
According to this law, 'the volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure'
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 6.17 L × 273K / 282 k
V₂ = 1684.41 L.K / 282 K
V₂ = 5.97 L
Because it relates to more than one branch of knowledge. It combines more than one academic disiplines.
Answer:
0.677 moles
Explanation:
Take the atomic mass of K = 39.1, O =16.0, P = 31.0
no. of moles = mass / molar mass
no. of moles of K3PO4 used = 4.79 / (39.1x3 + 31 + 16x4)
= 0.02256 mol
From the equation, the mole ratio of KOH : K3PO4 = 3 :1,
meaning every 3 moles of KOH used, produces 1 mole of K3PO4.
So, using this ratio, let the no. of moles of KOH required to be y.

y = 0.02256 x3
y = 0.0677 mol
If you don't find exactly 0.677 moles as one of the options, go for the closest one. A very slight error may occur because of taking different significant figures of atomic masses when calculating.
Answer:
The formula for lithium acetate is CH3COOLi
Explanation:
The formula for lithium acetate is obtained by replacing the hydrogen atom bonding to the oxygen atom in acetic acid with Li as shown below:
CH3COOH + LiOH —> CH3COOLi + H2O