You did not specify the types, but I believe the answer would be gamma radiation.
Solution of 0.25 M is prepared in two steps,
1) Calculate Amount of Solute:
Molar Mass of Solute: 342.3 g/mol
As we know,
Molarity = Moles / 1 dm³
or,
Moles = Molarity × 1 dm³
Putting Values,
Moles = 0.25 mol.dm⁻³ × 1 dm³
Moles = 0.25 moles
Now, find out mass of sucrose,
As,
Moles = Mass / M.mass
or,
Mass = Moles × M.mass
Putting Values,
Mass = 0.25 mol × 342.3 g.mol⁻¹
Mass = 85.57 g
2) Prepare Solution:
Take Volumetric flask and add 85.57 g of sucrose in it. Then add distilled water up to the mark of 1 dm³. Shake well! The solution prepared is 0.25 M in 1 Liter.
Answer:
0.7μM = 0.6 μM = 0.5 μM > 0.4 μM > 0.3 μM > 0.2 μM
Explanation:
An enzyme solution is saturated when all the active sites of the enzyme molecule are full. When an enzyme solution is saturated, the reaction is occurring at the maximum rate.
From the given information, an enzyme concentration of 1.0 μM Y can convert a maximum of 0.5 μM AB to the products A and B per second means that a 1.0 M Y solution is saturated when an AB concentration of 0.5 M or greater is present.
The addition of more substrate to a solution that contains the enzyme required for its catalysis will generally increase the rate of the reaction. However, if the enzyme is saturated with substrate, the addition of more substrate will have no effect on the rate of reaction.
<em>Therefore the reaction rates at substrate concentrations of 0.7μM, 0.6 μM, and 0.5 μM are equal. But the reaction rate at substrate concentrations of 0.2 μM is lower than at 0.3 μM, 0.3 μM is lower than 0.4 μM and 0.4 μM is lower than 0.5 μM, 0.6 μM and 0.7 μM.</em>
The "sub shells" are the orientations and shapes for your orbitals, going in order by Shells are a collection of subshells with the same principle quantum number, and subshells are a collection of orbitals with the same principle quantum number and angular momentum quantum number. Hope this helps :)
Answer:
10.3 g of oxygen are formed when 26.4 g of potassium chlorate is heated
Explanation:
This is the balanced equation:
2KClO₃(s) → 2KCl(s) + 3O₂(g)
Ratio beteween the salt and oxygen is 2:3
Molar mass of KClO₃ = 122.55 g/m
Let's find out the moles of salt
Mass / Molar mass
26.4 g /122.55 g/m = 0.215 moles
So, this is the final rule of three:
If 2 moles of KClO₃ make 3 moles of oxygen
0.215 moles of KClO₃ make (0.215 .3) /2 = 0.323 moles of O₂ are produced
Molar mass O₂ = 32 g/m
Moles . molar mass = mass
0.323 m . 32g/m = 10.3 g