Answer:
hope that helps
Explanation:
The total mass of reactants taken = 15.9 + 20.0 = 35.9 gm. From the conservation of mass the final mass of the contents of the vessel should also be 35.9 gm. But it is only 29.3 gm. The difference is due to the mass of released carbon dioxide gas.Hence the mass of carbon dioxide gas released = 35.9 – 29.3 = 6.6 gm
Answer: Except for gamma decay or internal conversion from a nuclear excited state, the decay is a nuclear transmutation resulting in a daughter containing a different number of protons or neutrons (or both). When the number of protons changes, an atom of a different chemical element is created.
Explanation:
D
This feature is formed at destructive boundaries where the denser plate (usually the oceanic plate) is subducted underneath the less dense plate (usually the continental plate).
Explanation:
the stress in the boundary between the two plates causes them to warp at the boundary forming a trench. This forced bending and the friction between the two plates (remember tectonic plates are very rugged) causes fissures to develop at the boundary. As the denser plate dives into the mantle, it begins to melt and the molten rock rises through the fissures. The magma erupts at the surface in several fissures forming volcanic mountains ranges along the convergent boundary.
Learn More:
brainly.com/question/13311967
brainly.com/question/13530753
brainly.com/question/13341884
brainly.com/question/949115
#LearnWithBrainly
Answer:
21 g/mL
Explanation:
To solve this problem, first look at the density equation, which is D=M/V, which D stands for density, M stands for mass, and V stands for volume. When you substitute in the variables, you get D=17.5/.82, which is equivalent to 21.34. However, since we need to pay attention to the sig fig rules for multiplying, we need to have the same amount of sig figs as the value with the least amount of sig figs, which is the number .82. .82 has two sig figs, so you round down. Your answer will be 21 g/mL.
Answer:
Δ S = 93.8 J/mol-K
Explanation:
Given,
Boiling point of chloroform = 61.7 °C
= 273 + 61.7 = 334.7 K.
Enthalapy of vapourization = 31.4 kJ/mol.
Using Gibbs free energy equation
Δ G = Δ H - T (ΔS)
at equilibrium (when the liquid is boiling), Δ G = 0
so, 0 = ΔH - T (Δ S)
T (Δ S) = Δ H
and ΔS = ΔH / T
Δ S = (31400 J/mol.) / 334.7 K
Δ S = 93.8 J/mol-K