The choices are:
a. Normal Force
b. Gravity Force
c. Applied Force
d. Friction Force
e. Tension Force
f. Air Resistance Force
Answer:
The answer is letter e, Tension Force.
Explanation:
Force refers to the "push" and "pull" of an object, provided that the object has mass. This results to acceleration or a change in velocity. There are many types of forces such as <em>Normal Force, Gravity Force, Applied Force, Friction Force, Tension Force and Air Resistance Force.</em>
The situation above is an example of a "tension force." This is considered the force that is being applied to an object by strings or ropes. This is a type force that allows the body to be pulled and not pushed, since ropes are not capable of it. In the situation above, the tension force of the rope is acting on the bag and this allows the bag to be pulled.
Thus, this explains the answer.
The hormone that the pineal gland releases is the hormone melatonin
The work required to stop the car is equal to the amount of kinetic energy that the car currently has. This is given by E=(1/2)mv^2. Since the energy is proportional to the square of the velocity, that factor will have the greatest influence on the work required to stop it.
To convert parametric to Cartesian systems, you need to find a way to get rid of the t's.
In this case, the t's are inside trigonometric functions, so we're going to use a very famous trig identity you should memorize:

If we plug sin(t) and cos(t) into that equation only x and y variables will be left!
BUT there's one thing. The given cos(t + pi/6) has nasty extra stuff in it. However, part a gives you a tip on how to relate x and y to a nice clean cos(t)
So if we do a little rearranging:

Now we can plug these into the famous trig identity!

Do a little bit of adjustments to get that final form asked for, and you'll be able to find those integers of a and b. ;)