<h2>
<u>KINETIC ENERGY</u></h2>
<h3>Problem:</h3>
» A 2kg mass is moving at 3m/s. What is its kinetic energy?
<h3>Answer:</h3>
— — — — — — — — — —
<h3>Formula:</h3>
To calculate the velocity of a kinetic energy, we can use formula
where,
- v is the velocity in m/s
- KE is the kinetic energy in J (joules)
- m is the mass in kg
— — —
Based on the problem, the givens are:
- KE (Kinetic energy) = ? (unknown)
- m (mass) = 2 kg
- v (velocity) = 3 m/s
<h3>Solution:</h3>
To get the velocity, substitute the givens in the formula above then solve.

Therefore, the kinetic energy is 9 Joules.
Answer:
Frequency, 
Explanation:
Visible red light has a wavelength of 680 nanometers (6.8 x 10⁻⁷ m). The speed of light is 3.0 x 10 ⁸ m / s. What is the frequency of visible red light?
It is given that,
Wavelength of a visible red light is, 
Speed of light is, 
We need to find the frequency of visible red light. It can be calculated using below relation.

So, the frequency of visible red light is
.
Answer:
I am not sure of the question?
Explanation:
List the question
Answer:
D) 735 J(oules)
Explanation:
Work is defined as force * distance
Force is defined as mass * acceleration
Given a mass of 15 kg and a gravitational acceleration of 9.8 m/s² since the box is being lifted up, the force being applied to the box is 15 kg * 9.8 m/s² = 147 N
Since the distance is 5 meters, the work done is 147 N * 5 m = 735 N/m = 735 J, making D the correct answer.