Answer: 0.258
Explanation:
The resistance
of a wire is calculated by the following formula:
(1)
Where:
is the resistivity of the material the wire is made of. For aluminium is
and for copper is 
is the length of the wire, which in the case of aluminium is
, and in the case of copper is 
is the transversal area of the wire. In this case is a circumference for both wires, so we will use the formula of the area of the circumference:
(2) Where
is the diameter of the circumference.
For aluminium wire the diameter is
and for copper is 
So, in this problem we have two transversal areas:
<u>For aluminium:</u>

(3)
<u>For copper:</u>

(4)
Now we have to calculate the resistance for each wire:
<u>Aluminium wire:</u>
(5)
(6) Resistance of aluminium wire
<u>Copper wire:</u>
(6)
(7) Resistance of copper wire
At this point we are able to calculate the ratio of the resistance of both wires:
(8)
(9)
Finally:
This is the ratio
Answer:
There you have it. The y-component of air resistance for the fired bullet still depends on the fired speed of the bullet (since it is proportional to v2). A fired bullet (with air resistance) does not hit the ground at the same time as a dropped bullet.
Explanation:
hope this helped ✨
Explanation:
Below is an attachment containing the solution.
Answer:
20.45%
Explanation:
The probability that the student got a B is

Now, how many students are there in total?
The answer is

How many students got a B?
The answer is

therefore, the probability that the student has got a B is

Hence, the probability that a student has got a B is 20.45%
Answer:
45.89m/s²
Explanation:
Given
Distance S = 305m
Time t = 3.64s
To get the acceleration during this run, we will apply the equation of motion:
S = ut+1/2at²
Substitute the given parameters into the formula and calculate the value of a
305 = 0+1/2 a(3.64)²
304 = 1/2(13.2496)a
304 = 6.6248a
a = 304/6.6248
a = 45.89m/s²
Hence the average acceleration during this run is 45.89m/s²